ASGP (2007), vol. 77: 39-67

ENVIRONMENTAL CHANGES AROUND THE CENOMANIAN-TURONIAN BOUNDARY IN A MARGINAL PART OF THE OUTER CARPATHIAN BASIN EXPRESSED BY MICROFACIES, MICROFOSSILS AND CHEMICAL RECORDS IN THE SKOLE NAPPE (POLAND)

Krzysztof BĄK

Institute of Geography, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland; e-mail: sgbak at cyf-kr.edu.pl

Bąk, K., 2007. Environmental changes around the Cenomanian-Turonian boundary in a marginal part of the Outer Carpathian Basin expressed by microfacies, microfossils and chemical records in the Skole Nappe (Poland). Annales Societatis Geologorum Poloniae, 77: 39-67.

Abstract: Lithology, microfacies, benthic foraminiferal and bulk chemical analyses of the Spława section in the Skole Nappe, Outer Carpathians (Poland) reflect environmental changes across the Cenomanian-Turonian transi- tion. Biogenic-rich-turbidite sedimentation preceded the organic-rich sedimentation in the Skole Basin, termina- ting in the latest Cenomanian in response to progressive eustatic sea-level rise and to expansion of an oxygen minimum zone. The uppermost Cenomanian black, laminated, organic-rich shale series records the oceanic anoxic event (OAE-2). The benthos-free black non-calcareous shales exhibiting positive excursions of chemical redox indexes are indicative of bottom-water anoxia, interrupted by periods of suboxic conditions with sedimentation of hemipelagic green shales with poor agglutinated foraminiferal assemblages. An extremely low sedimentation rate or even a hiatus and an increase in deep-water circulation causing basin oxygenation resulted in precipitation of a ferromanganese layers and siliceous-manganiferrous variegated shales, as documented by low values of chemical redox indices. However, the lack of benthos and bioturbation, and low values of the Ce/La ratio in the subsequent succession of variegated shales (dominated by green shales) indicate a return to stressed conditions at basin floor with sluggish bottom water circulation, which occasionally resulted in sea floor anoxia with deposition of organic-rich shales. The long-termed well-oxygenated conditions at the basin floor appeared in the Early Turo- nian, as documented by diversified benthic foraminiferal assemblages. The frequency of radiolarian-rich layers and Ba/Al and Ba/Sc ratios increase up-section, reflecting an increase in primary productivity, induced by upwelling circulation.

Article: 
Volume: