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Ab stract: It is fre quent task to cor re late pro files or cores bas ing on dif fer ent meas ure ments per formed on the
se ries of sam ples. The dif fi culty arises when there are many pro files and none is the main or ref er ence one. The
rea son is that the number of pos si ble cor re la tions grows ex po nen tially with the number of pro files. To re solve the
prob lem a Monte Carlo method is adopted here, what makes it very prob able to dis cover the best cor re la tions in a
rea son able amount of com put ing time. The qual ity of a cor re la tion is meas ured by a met ric of dis simi lar ity of the
sam ples. The fi nal re sult, given in graphi cal form, has a form of lines con nect ing cor rela tive sam ples from
dif fer ent pro files. The number of lines (cor re la tions across pro files) is user- defined and can vary from one to
doz ens. The number of pro files, sam ples, and vari ables de pends only on the com pu ta tional re sources. Large
prob lems need longer com pu ta tion times to achieve sta ble re sults.
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IN TRO DUC TION

Proba bly, the most fre quently oc cur ring piece of nu -
meri cal data in ge ol ogy is a rec ord of meas ure ments pre -
formed along (as a rule ver ti cal) pro file, or core (well- log).
Since typi cally many fea tures (vari ables) are in ves ti gated,
the rec ord is mul ti di men sional. Hav ing two or more “par al -
lel”, neigh bour ing pro files, with the same meas ure ments
per formed, it is natu ral to cor re late them. While there are
many meth ods of cor re la tion of two pro files (Birks, 1986),
the more dif fi cult is to cor re late many (three, tens) of pro -
files. Such a task can be re duced to many cor re la tions of two 
pro files, when one of pro files can be treated as the main
one. How ever, if there were no geo logi cal rea son for treat -
ing one pro file as ref er ence, such so lu tion would in tro duce
a sub jec tive bias into the re sult ing cor re la tion. Moreo ver,
se quen tial cor re la tion of pro files with the ref er ence one ne -
glect the mu tual in for ma tion con nected with each pair of
pro files. If there are NP pro files, there are NP-1 cor re la tions 
with the ref er ence pro file, while there are as many as
NP*(NP-1)/2 cor re la tions of dif fer ent pairs of pro files.

In fact, if there is ar ray of many pro files, par al lel in
sense of im por tance, to be mu tu ally cor re lated, the nu meri -
cal method used have to mir ror the geo logi cal situa tion, i.e.
to find the gen eral cor re la tion, which is the best one for all
the pro files, at the same time.

Com pu ta tional dif fi cul ties aris ing with the fast in crease
of amount of pos si ble cor re la tions with the number of pro -
files (NP) are over come by the use of ap proxi mate Monte
Carlo method. While the ran dom method, in case of very
large prob lems (many long pro files with many fea tures),
can not as sure that the found so lu tion is really the best one,
the cor re la tion proba bly will be close to op ti mal. For small
and me dium size prob lems (de pend ing on com puter re -
sources), find ing of the best cor re la tion is very prob able.

The de scribed be low al go rithm is im ple mented in pro -
gram Mult Corr (see Fig. 1) (Na lepka, 2005).

STRUC TURE OF DATA FOR ANALY SES

A ba sic data unit here is a spread sheet or a ta ble with
NV vari ables and NL lev els or sam ples taken from a sin gle
pro file. The vari ables (meas ure ments of dif fer ent fea tures of 
sam pled ma te rial), as a rule, are or dered in col umns; the
sam ples are or dered in rows. For the com puter ap pli ca tion
de scribed here, the first col umn should con tain depths of
sam ples, and the first row vari able names. Iden ti fi ers
(names) of vari ables must be con sis tent in all the cor re lated
pro files. Some vari ables may be ab sent for some pro files;
the or der of vari ables in the ta bles does not mat ter. The lev -
els are or dered stra tigraphi cally, what is natu ral.



Con sis tent vari able names en able defi ni tion of “a set of
vari ables” to be used in cal cu la tions. Try ing dif fer ent vari -
ables in cor re lat ing pro files (the ques tion of “fea ture se lec -
tion”; Gu yon & Elis seeff, 2003) seems to be cru cial in many 
fields of ap pli ca tions. Vari ables are as sumed to be quan ti ta -
tive or al most quan ti ta tive; how ever, there is no strict con -
straint in that point.

THE PROB LEM

There is a number (NP) of rec ords (ta bles, pro files) to
be cor re lated. All pro files, in prin ci ple, should con tain cor -
rela tive ho ri zons, i.e. sam ples to be found as simi lar. If one
or a few pro files are com pletely dif fer ent than most of oth -
ers, the re sult will be skewed.

There is no limit for the number of pro files to be cor re -
lated, other than mem ory re sources for stor ing them. Of
course, the com put ing time is in creas ing with in creas ing
NP. How ever, even for large NP (doz ens) pro vi sional cal cu -
la tions can be fast. To achieve more pre cise and sta ble re -
sults, longer com put ing times would be nec es sary. Gen er -
ally, the pre ci sion of the re sults seems to in crease loga rith -
mi cally with the number of tri als (nT – user de fined main
pa rame ter, roughly pro por tional to the com put ing time).

The sense of cor re la tion or syn chro ni za tion of pro files,
ex pressed graphi cally, that is in ap pro pri ate lev els, in all
pro files, are to be con nected by lines (Fig. 1). Lines con -
nect ing the most simi lar sam ples, one from each pro file, at
the same time di vides all the pro files. In the fol low ing text,
such line is re ferred to as a di vi sion. Af ter the first di vi sion
is found, the next one can be searched for. The ob vi ous con -
straint is that lines con nect ing sam ples can not cross one an -
other. They can have com mon sam ples (the lines can touch), 
but all sam ples from one di vi sion must be older or younger
than those from the other di vi sion (ex cept for pos si bil ity of
com mon sam ples). Num ber of di vi sions (ND) is a user-
 defined pa rame ter; it can be set from 1 to 100.

In the sim plest ap proach, the first con nec tion joins the
most simi lar sam ples; the sec ond one is less op ti mal, and so

on. Such an al go rithm would work quite fast. How ever,
search ing, in con secu tive steps, for in creas ingly un im por -
tant di vi sion is not a good method, be cause it does not re -
flect re al ity.

Cru cial for the al go rithm de scribed be low is an as sump -
tion that there is no natu ral hi er ar chy of di vi sions.

The main idea is to di vide pro files in a syn chro nized
way by con nect ing the most simi lar sam ples, where “the
most simi lar” re fers to the to tal meas ure of simi lar ity of
sam ples within groups (ND groups of NP sam ples in each
group). In the case of se quen tial al go rithms, pre vi ous di vi -
sions would block off newer ones, be cause natu ral re stric -
tion does not al low di vi sions to cross one an other. Thus, the
re sult ing to tal simi lar ity would not be maxi mal.

CRI TE RION OF GOOD NESS
OF COR RE LA TION

For any pair of lev els (sam ples), the dis simi lar ity co ef -
fi cient (DC) can be cal cu lated (Gower & Leg en dre, 1986;
Ma her, 1998). The sim plest form of DC is the sum, over all
vari ables in cluded, of ab so lute val ues of dif fer ence be tween 
the val ues from the first and the sec ond pro file. It is the so-
 called Man hat tan met ric (Ma her, 1998), be cause it re sem -
bles dis tance from one point to the other to be walked in the
rec tan gu lar net of streets. Such a defi ni tion is adopted in the
al go rithm; how ever, with pos si ble ap pli ca tion of dif fer ent
data trans for ma tions. The va ri ety of pos si ble other defi ni -
tions of DC (e.g., Euclid ian – square root of sum of squares) 
will not be dis cussed here, be cause they are com pu ta tion ally 
ir rele vant to the main con cept of al go rithm.

It is nec es sary to note that scal ing of vari ables is im por -
tant for DC, if dis tances for dif fer ent vari ables are to be
summed up. For ex am ple, for one vari able dis tance be tween 
sam ples is meas ured in [gm-3], be cause the vari able re fers to 
den sity, while for the other vari able, grain size, it is meas -
ured in [mm]. Nu meri cal ad di tion of val ues meas ured in dif -
fer ent units must be care fully per formed. If one vari able has 
val ues of the or der of 100 and the other 0.01, then the in flu -
ence of the sec ond vari able on the re sult ing DC value will
be com pletely neg li gi ble. The sim ple way to man age such
situa tions is to stan dard ize vari ables (see be low, Trans for -
ma tion of vari ables).

The qual ity of cor re la tion of NP pro files by ND lines
(di vi sions) is meas ured by the value of to tal DC. The ele -
men tal DC is cal cu lated for the pair of sam ples. The to tal
DC is the sum of DCs for all pairs of sam ples, pro vided that
both sam ples in each pair came from the same di vi sion. For
one di vi sion there are NP*(NP-1)/2 pairs of sam ples, so the
number of in volved DCs is ND* NP*(NP-1)/2.

Tak ing into ac count the number of vari ables (NV) used
in cal cu la tion of the ele men tal DC, the number
NV*ND*NP*(NP-1)/2 of dif fer ences (the most deeply ele -
men tal DC) is in volved. This number is used for nor mali za -
tion of the to tal DC, to make it com pa ra ble among dif fer ent
analy ses (un der the as sump tion that vari ables were nor mal -
ized or that they are of simi lar na ture).
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Fig. 1. Ex amplary cor re la tion of three (NP = 3) very short pro -
files. The number of di vi sions ND = 3. Lines of cor re la tions can
“use” one sam ple twice (here, the bot tom most sam ple from Os
94-5) or many times; how ever, they can not cross one an other



THE AL GO RITHM FOR SEARCH ING
THE LOW EST TO TAL DC

Num ber of pos si ble cor re la tions

In case of one di vi sion only (ND = 1), and pro files of,
say 100 sam ples each, the to tal number of pos si ble di vi sions 
is 100NP-1. For five pro files (NP = 5), this number is 108.
Since in the cal cu la tion of DC for one (trial) cor re la tion
about NV*(NP-1) sub trac tions are in volved, the time of
com pu ta tion needed to check all pos si ble cor re la tions
would be of the or der of an hour (as sum ing NV = 100, and
typi cal 3GHz PC).

For more di vi sions (ND>1), the number of op era tions
rises very fast with ND, eas ily ap proach ing non- realistic
com put ing time. The so lu tion then would be the ap pli ca tion
of the Monte Carlo method (e.g., Rob ert & Casella, 1999).
How ever, for not very low NP, ND, and number of sam ples, 
sim ple Monte Carlo tri als (of ran domly cho sen cor re la tions) 
can, in a re al is tic ti me frame, check only lit tle per cent age of
all pos si bili ties. This is why some com pro mise has been
adopted in the pres ent al go rithm.

The al go rithm

Start ing de scrip tion from the most deeply nested pieces
of the al go rithm, the fol low ing op era tions are per formed.

(1) All of the NP pro files are num bered ran domly. It is
as sumed that no one pro file is a ref er ence one, and all the
pro files are of equal im por tance. In the fol low ing text, the
no tion “first pro file”, “sec ond”, and so on, re fers to the ran -
dom or der.

(2) From the first pro file, the sam ple is ran domly se -
lected from those not yet used in any pre vi ously per formed
di vi sion. The uni form prob abil ity dis tri bu tion is used, so all
sam ples have equal prob abil ity of be ing se lected.

(3) If it is not the first di vi sion, one has to rec og nize to
which sec tion of the pro file the se lected sam ple be longs.
Since pro files are as sumed to be in the stra tigraphi cal or der,
di vi sions can not cross one an other. Sam ples from the sub -
se quent pro files will be con sid ered only from this, ap pro pri -
ate sec tion.

(4) In the sec ond pro file (or in its frag ment), the sam ple
is searched for the low est DC with the sam ple al ready se -
lected in the first pro file. Ei ther all pos si ble sam ples, or only 
a given number of ran domly se lected sam ples are be ing
checked. That last op tion, ap pli ca tion of which is up to the
user, is for lim it ing com pu ta tion time in case of large prob -
lems.

(5) Re peat point (4) for the next pro files. How ever,
start ing from the third pro file, for cal cu la tion of ele men tal
DC, in stead of sim ple val ues of vari ables, the av er age val -
ues cal cu lated for al ready con nected sam ples are used and
com pared with sim ple val ues from the ac tual pro file. At this 
step, it is pos si ble to ap ply a “pen alty” for overly close di vi -
sions. The value of DC is mul ti plied by a fac tor (1+
penalty/(1+dis tance)1/2), where dis tance is the number of
sam ples be tween di vi sions in the con sid ered pro file, and
Pen alty is a user- defined pa rame ter.

(6) The ob tained DC is checked if it is lower than the

for merly ob tained low est value. If it is lower, then its value
is re mem bered, as well as the re lated di vi sion, for use in the
higher- level steps of the al go rithm.

(i) Ac cord ing to the idea of Monte Carlo tri als, the steps 
(1)–(6) are re peated many times. Let, that number of tri als in 
the nested loop is de noted by nT1. The low est ob tained DC
is re corded, as well as the re lated (op ti mal) di vi sion.

(ii) The point (i) is re peated ND times to com plete all
di vi sions re quired by the user. The to tal (at this stage) DC is
cal cu lated. The cal cu la tion is as fol lows: within each di vi -
sion, ele men tal DCs for all pairs of sam ples from dif fer ent
pro files are cal cu lated ( NP*(NP-1)/2 pairs) and summed
up. This is re peated for all ND di vi sions, and in to tal DC all
ele men tal DCs are summed up. In the cal cu la tion of the to tal 
DC, all pro files and all di vi sions are of equal sta tis ti cal
weight.

(iii) The point (ii) is re peated many times (nT2 –
number of tri als in the outer loop). The low est ob tained to tal 
DC is re corded, as well as the re lated cor re la tion. This cor -
re la tion (com pris ing ND di vi sions) is the fi nal one.

Pa rame ters of the al go rithm

The main pa rame ter of the al go rithm it is the number of
Monte Carlo tri als (nT, or Num ber of Tri als in the pro gram
in ter face). Com put ing time in creases line arly with the
number of tri als. A prac ti cal op tion in the pro gram is to de -
clare a time limit. The tri als are stopped when the time limit
is reached.

The user- defined nT is then re cal cu lated into two num -
bers men tioned in the pre vi ous para graph: nT1 and nT2. The 
ra tio of nT2/nT1 is also user- defined (Main/Sub- trials).
While a larger Num ber of Tri als give higher pre ci sion, the
sec ond pa rame ter af fects the cal cu la tions less clearly. Its
value (de fault = 1) can be ad justed ex peri men tally. How -
ever, it seems to be im por tant only for large data sets (see
the dis cus sion be low, in Ex em plary re sults of cor re la tion –
Ar ti fi cial data). Gen er ally, higher val ues of Main/Sub- trials
in crease the prob abil ity of ob tain ing the best cor re la tion, but 
also in crease the number of tri als (i.e. com put ing time);
whereas lower val ues as sure good re sults in a rea son able
amount of time even for very large data sets.

The next pa rame ter has a goal simi lar to the pre vi ous
one: lim it ing com put ing time with out deg ra da tion of re li -
abil ity. In stead of check ing the DC value for all sam ples (in
step (4) of the al go rithm), only a few ran domly se lected
sam ples are checked. The number of sam ples to be checked
is set by the user as a value of the pa rame ter Try sam ples
(the de fault value is All).

In case of mul ti ple di vi sions (ND>1) it is pos si ble to en -
force avoid ance of overly close di vi sions. If, in every pro -
file there are small frag ments simi lar to each other, then all
di vi sions (sam ple con nec tions) can (op ti mally) be in di cated
in those frag ments only, al though other frag ments might be
in ter est ing as well. The pa rame ter Pen alty for too close can
help in such a case (Fig. 2).

The last pa rame ter, Num ber of di vi sions (ND), un like
the pre vi ously de scribed ones, is “visi ble” in the re sult. It is
the number of di vi sions of pro files, or number of con nec -
tions be tween sam ples from dif fer ent pro files. It is worth
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men tion ing again that the al go rithm op er ates in such a way
that there is no or der of im por tance in di vi sions. As a re sult
we get ND di vi sions, which are the best in gen eral (at least
close to the best, since the al go rithm is not de ter mi nis tic).

TRANS FOR MA TION OF VARI ABLES

Vari ables are, as a rule, to be stan dard ized, since the
dis simi lar ity co ef fi cient (DC) is cal cu lated over many vari -
ables. Stan dardi za tion is not nec es sary, and if no ap plied
vari ables of higher vari abil ity (stan dard de via tion) will sim -
ply weight more in the analy sis. Of course, in case of dif fer -
ences as high as an or der of mag ni tude, the smaller range
vari ables would have al most no in flu ence on the cal cu lated
DCs.

Other type trans for ma tion of data can be ap plied to
achieve some spe cial ef fects. For ex am ple, square root
trans for ma tion di min ishes rela tively the in flu ence of high
val ues, what may be de sir able from some point of view.

Vari ables stan dardi za tion (two kinds)

Stan dardi za tion of a vari able con sists of re cal cu la tion
of its val ues by sub tract ing the av er age value, and di vid ing
the re sult by the stan dard de via tion of that vari able. The re -
sult ing stan dard ized vari able has zero mean and unit stan -
dard de via tion. Such a trans for ma tion op er ates well for nor -
mally dis trib uted vari ables, or vari ables not too far from
nor mal ity. In ge ol ogy, vari ables are fre quently posi tively
skewed, and could be “nor mal ized” by tak ing loga rithm (if,
in place of pos si ble zero val ues, a rea son able de tec tion limit
can be used – what is im pos si ble, for ex am ple, in count ing
in di vidu als of some kind).

There is a cer tain number of pro files (NP) in the analy -
sis, and each pro file has a cer tain number of sam ples.

Stan dardi za tion can be per formed sepa rately, within in -
di vid ual pro files, or glob ally, as sin gle stan dardi za tion for
all val ues (of a given vari able) from all pro files. The first
ap proach is bet ter if, for ex am ple, one pro file has gen er ally
lower val ues in some vari able. Since it would be im pos si ble
to find simi lar val ues in other pro files, in such a case, it
would be bet ter to stan dard ize each pro file to the same zero
mean and unit stan dard de via tion. How ever, im por tant in -
for ma tion can be lost in such a trans for ma tion. A pro file
with gen er ally low val ues may be ac tu ally syn chro nous
with part of other pro file, which in other parts has high val -
ues. When stan dardi za tion is made sepa rately for such in di -
vid ual pro files, find ing proper cor re la tion can be dif fi cult, if 
not im pos si ble. That is the rea son for the sec ond kind of
stan dardi za tion, over all pro files.

Global stan dardi za tion (right graph) changes noth ing
but the or der of mag ni tude of val ues, which is sen si ble only
in com pari son with other vari ables.

Global stan dardi za tion of vari ables, along all the pro -
files, does not change the re la tions be tween pro files (com -
pare the left and the right graph in Fig. 3). The only rea son
for such trans for ma tion of the vari ables is to make them in -
ter com pa ra ble, which is im por tant in DC cal cu la tion. If it is
as sumed that the vari ables from Fig. 3 have, in both pro -
files, cor rect, rep re sen ta tive val ues, it means that the three
bot tom most sam ples from the first are simi lar to the three
up per most sam ples from the sec ond. In such a case, no
trans for ma tion or global stan dardi za tion should be used.
How ever, if val ues in the first pro file are only ac ci den tally
lower (for ex am ple, be cause of in cor rect meas ure ment cali -
bra tion), then sepa rate stan dardi za tion within the pro files
can help (mid dle graph in Fig. 3).
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Fig. 2. The ef fect of the ap pli ca tion of pa rame ter Pen alty for too close. The left graph – zero pen alty, the right graph – pen alty equals
0.5. The left graph does not il lus trate the op ti mal cor re la tion since in case of zero Pen alty all three di vi sions should be iden ti cal



Square root trans for ma tion

A square root trans for ma tion is es pe cially ap pli ca ble to
counts of some in di vidu als, like pol len grains or other kind
of re mains. A zero value has a spe cial mean ing in such a
case (lack of evi dence), and can not be re placed by an ar bi -
trar ily low value (as in the log trans for ma tion). On the other
hand, while some vari ables have a few counts, some oth ers
can have thou sands. The gen er ally small amount of in di -
vidu als in some vari able (taxon), by no means in di cates a
low sig nifi cance of this vari able. How ever, sim ple stan -
dardi za tion is sel dom ap plied in such cases (Birks & Gor -
don, 1985). Sqrt (Square root) trans for ma tion is typi cal
(Pren tice, 1980).

The Sqrt trans for ma tion (Fig. 4) in flu ences both the in -
ner vari able re la tions (be tween sam ples) and the re la tions
be tween vari ables. The first ef fect is a by- product (which
does not skew the fi nal re sult); the sec ond is the main goal
of the trans for ma tion. The main idea of Sqrt can be ex em pli -
fied nu meri cally: while the two dif fer ences 9-0 = 9, and 9-1
= 8, dif fer only by 12%, af ter data trans for ma tion they are
3-0= 3 and 3-1= 2, and dif fer by 40%.

Se lec tion of vari ables

Se lec tion of vari ables to be used by the al go rithm is es -
sen tial for the fi nal re sult. How ever, use of one vari able in -
stead of an other is not in the strict sense a vari able trans for -
ma tion; it can be treated as a kind of trans for ma tion of data
for analy sis.

In the com puter pro gram which im ple ments the de -
scribed al go rithm, no method for auto matic vari able (fea -
ture) se lec tion (Gu yon & Elis seeff, 2003) is pro posed, since 
there is no sin gle clear cri te rion of “a good fit” in the prob -
lem of pro files cor re la tion. In fact, se lec tion of vari ables (as
well as data trans for ma tions) can be rec om mended as a tool
to ob tain an in ter pret able re sult. A pri ori in for ma tion about
vari ables can not be ig nored. The charge of sub jec tiv ity in

analy sis can not be avoided in any non- trivial prob lem. On
the other hand, it is im pos si ble to ob tain any de sired cor re la -
tion by ma nipu lat ing the vari ables. Ap pli ca tion of nu meri -
cal al go rithm im poses a sig nifi cant amount of ob jec tiv ity
onto the analy sis.

Smooth ing win dow

For geo logi cal pro files auto cor re la tion of sam ples is
typi cal. It means that the neigh bour ing sam ples are, as a
rule, simi lar. That fact can be use ful for cor re la tion of pro -
files, es pe cially in case of noisy data, i.e. if the “sig nal” to
be used in analy sis is hid den, to some ex tent, by the noise of
dif fer ent ori gin (as in. e.g., Fig. 5). The noise, or at least
some part of it, is not auto- correlated; av er ag ing neigh bour -
ing sam ples can im prove the “sig nal to noise” ra tio.

The pa rame ter Smooth ing win dow is the number of
neigh bour ing sam ples to be added to the one ac tu ally con -
sid ered (in DC cal cu la tion). In fact, the weighted av er age is
cal cu lated, with the “tri an gu lar” weights. For ex am ple, for
Smooth ing win dow = 1 the weights are: 1/4, 1/2, 1/4, for
Smooth ing win dow = 2, the weights are: 0.111, 0.222,
0.333, 0.222, 0.111. The high est weight is given to the ac tu -
ally con sid ered sam ple. The ef fect of smooth ing for the cor -
re la tion is il lus trated in Fig. 6.

EX EM PLARY RE SULTS
OF COR RE LA TION

Ar ti fi cial data

Let five rec ords (NP = 5) of 100 sam ples each (Fig. 7)
con sist of NV = 30 vari ables (the last, of course not visi ble
in the fig ure). The data are ran dom num bers from a uni form
dis tri bu tion in the in ter val (0, 1). As a re sult, no “true” cor -
re la tion ex ists in those rec ords.

The re sult of cor re la tion given in Fig. 7 is ob tained for
modi fied data. Sim ply, the sam ple Nr 10 from the first rec -
ord, the sam ple 20 in the sec ond rec ord, 30 in the third, 40 in 
the fourth, and 50 in the fifth rec ord are set iden ti cal. As a
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Fig. 3. The ef fect of the vari able stan dardi za tion. The val ues of
one vari able from two pro files are plot ted. The origi nal val ues (left 
graph) in one pro file are smaller than in the other. Af ter in de pend -
ent stan dardi za tion within pro files (mid dle graph), the pro files be -
came very simi lar. Global stan dardi za tion (right graph) changes
noth ing but the or der of mag ni tude of val ues, which is sen si ble
only in com pari son with other vari ables

Fig. 4. In the right graph is pre sented the ef fect of the Sqrt
trans for ma tion of val ues (two vari ables) from the left graph. Af ter
trans for ma tion sta tis ti cal weights of the vari ables with low and
high val ues be come com pa ra ble



re sult, very strong “true” cor re la tion ex ists in the data. The
de scribed al go rithm can search for such a cor re la tion. Us ing 
“il le gal” a pri ori in for ma tion that there is one level in each
rec ord simi lar to some level from other rec ords, the number
of di vi sions is cho sen to be ND = 1. Cor rect cor re la tion is
ob tained in com put ing time of about a sec ond for 1,000 tri -
als. In as low a number as 100 tri als, half of the ob tained re -
sults in di cate the proper cor re la tion.

More in ter est ing is cor re la tion of rec ords of strictly ran -
dom data, with no cor re la tion. Any way, there are more simi -
lar sam ples among rec ords and also the most simi lar ones
(with the low est DC).

Us ing such data the in flu ence of the pa rame ter nT2/nT1

(Main/Sub- trials) has been in ves ti gated. Sub- trials should
help when large prob lems are to be solved in rea son able
time. How ever, in case of medium- size prob lem and long
com put ing time, use of too many sub- trials is a dan ger (Fig.
8). If there are very many sub- trials, it can hap pen that in
every main trial the same “best” cor re la tion will be found.
As a re sult, the repe ti tion of main tri als would be fruit less
waste of com put ing time. In case of more than one di vi sion
(ND>1), the best first cor re la tion can ex clude the best sec -

ond one, be cause of pos si ble cross ing. The main tri als (nT2) 
are nec es sary if the best set of ND cor re la tions is to be
found.
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Fig. 5. Ex em plary data for pres en ta tion of the Smooth ing win -
dow op tion. There are two pro files (in di cated by dif fer ent point
sig na tures), with two vari ables, nearly mo noto nously chang ing
along the pro files. In case of both vari ables, the val ues in both pro -
files are simi lar along the pro files, but the pres ence of noise make
pre cise cor re la tion dif fi cult

Fig. 6. Cor re la tion of the rec ords from Fig. 5 (ND = 5). The pa -
rame ter Smooth ing win dow is set equal to 0, 1, and 3, from the left
plot to the right one. In the ideal cor re la tion lines of di vi sions are
ex pected hori zon tal

Fig. 7. Ar ti fi cial ex am ple based on ran dom pro files with one
sam ple com mon for all pro files. Cor rect cor re la tion is pre sented



Sim ple ex em plary data (Ha waii)

Typi cal ap proach to the nu meri cal data analy sis con -
tains a kind of com pari son of three en ti ties: row data, sub -
jec tive opin ion on the geo logi cal situa tion, and the sta tis ti -
cal re sult it self. Since the sub jec tive ele ment is very im por -
tant, it is im pos si ble to give really good ex am ple, be cause it
should be based on the reader data, what is im pos si ble.

The data used here (Wes sel, 2003) con sist of only two
vari ables, what makes it easy to visu al ize data in ex tenso
(Fig. 9). In case of one vari able the cor re la tion is triv ial.
How ever, also in the case of two vari ables, and seven rec -
ords, it is clear that cor re lat ing rec ords bas ing on the row
data (Fig. 9) is al most im pos si ble.

Data are rather smooth, i.e. not noisy, what re sults in
clear cor re la tion (Fig. 10). Even the ap pli ca tion of rela tively 
high Pen alty for too close would not in flu ence the analy sis
enough to in di cate more cor rela tive lev els. How ever, other
kind of stan dardi za tion of vari ables re sults in sys tem ati cally 
moved cor re la tion (Fig. 11).

Real data (Qua ter nary plant pol len counts)

The pol len counts, in the Holo cene and the Late Gla cial
paly no logi cal analy sis, are in te ger num bers rang ing from 0
to hun dreds or more. Typi cal pol len ta bles have 100 rows

(sam ples) and 100 col umns (vari ables, pol len taxa). Typi cal
for that kind of data is that some taxa (pine, birch) are abun -
dant, while some oth ers (lime, wheat), by no means less im -
por tant, are poorly rep re sented by a few pol len grains only.
So the square root trans for ma tion is ap pli ca ble here.

Four pro files from Cen tral Po land were used in the
analy sis: Lake Gop³o (Jan kowska, 1980), Lake Goœci¹¿
(Ralska- Jasiewiczowa et al., 1989), Os³onki (Na lepka,
2005), and Lake Stek lin (No ryœkiewicz, 1982). From the
taxa pres ent in the pol len ta bles (al most 300 in case of Lake
Goœci¹¿), the number of NV = 21 is used (Ar tem isia, Be tula
nana-t., Be tula, Carp inus be tu lus, Ce re alia un diff., Che no -
po di aceae, Co ry lus av el lana, Frax inus ex cel sior, Hip -
pophaë rham noi des, Ju ni pe rus com mu nis, Larix, Pinus
cem bra-t., Pinus sylves tris, Pte rid ium aq uil inum, Quer cus,
Ru mex ace tosa/ace to sella, Salix po laris-t., Selagi nella se -
lagi noi des, Tilia un diff., Ul mus, Ur tica un diff.). The choice
of taxa is in prin ci ple based on the a pri ori eco logi cal
knowl edge, and on the goal to be achieved (Holo cene or
Late Gla cial is to be cor re lated). How ever, modi fi ca tion of
set of taxa af ter ob tain ing ini tial re sults seems not to be in
con tra dic tion with the ideal of ob jec tiv ity of nu meri cal
analy sis.

As cus tom ary in paly no logi cal analy sis, data were
trans formed into per cent ages within sam ple – pol len spec -
trum. Since the per cent age cal cu la tion is not triv ial here (the 
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Fig. 8. Il lus tra tion of the dan ger when too many sub- trials (too low value of pa rame ter nT2/nT1 = Main/Sub- trials) are ap plied. For
large number of tri als (here mil lion) the fi nal DC value may be not the low est one. The gen eral de pend ence of av er age DC and its sta bil ity
(stan dard de via tion) on the number of tri als is shown. The pa rame ters were: ND = 3, nT2/nT1 = 1, NP = 5, NL1-5 = 100, NV= 30, and uni -
formly dis trib uted ran dom data were used. The re sult for nT2/nT1 = 10 is given for com pari son; be side the av er age value also the best one
is shown (the slightly lower tri an gle)



ques tion of base for 100%), it was per formed us ing the
POL PAL pro gram (Na lepka & Walanus, 2003; Walanus &
Na lepka, 2004), dedi cated to pol len counts han dling.

The re sult of cor re la tion ob tained for as many as ND=
15 di vi sions (Fig. 12) is clear. Evi dent is the syn chro nous
frag ment in the lower part of pro files (Late Gla cial). The up -
per parts were proba bly un der deeper lo cal in flu ence, and
ap pear not so simi lar. How ever, a cor rec tion of the taxa set
used in cor re la tion could help to cor re late the Holo cene
part, as long as re spec tive sec tions are pres ent in all pro files
(cf. Na lepka, 2005).
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Fig. 9. Ex em plary data (avail able in www, Wes sel 2003).
Seven rec ords of dif fer ent number of sam ples from the re gion of
Ha waii. Two vari ables, which data con sist of, are pre sented in
sepa rate plots. Data are stan dard ized (within rec ords) since vari -
ables dif fer by al most one or der of mag ni tude

Fig. 10. The re sult of cor re la tion of rec ords pre sented in Fig. 9.
The global data stan dardi za tion has been ap plied; i.e. for each
vari able the global mean and stan dard de via tion, cal cu lated for all
1,037 sam ples, has been used for vari able stan dardi za tion
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Streszc zenie

KO RELACJA NUMERYC ZNA
WIE LOWYMIA ROWYCH DANYCH DLA KILKU

PRO FILI GE LO GIC ZNYCH

Adam Walanus & Dorota Na lepka

Ko re low anie dwóch lub kilku sek wencji próbek z pro filu, na
pod stawie wyników ró¿nych po mi arów wyko ny wanych dla
próbek, jest jednym z najc zêœciej wyko ny wanych za dañ. Jed nak w 
sytuacji ko re low ania wiêkszej lic zby równorzêdnych pro fili, ze
wzglêdu na wyk³ad niczo rosn¹c¹ z liczb¹ pro fili lic zbê mo¿liwych 
ko relacji, za danie staje siê trudne. Zapro pon ow ane rozwi¹za nie
ogranic zenia czasu poszuki wania najlepszej ko relacji wyk orzys -
tuje me todê Monte Carlo. Otrzy many wynik ko re low ania, aczkol -
wiek nie koniec znie najlepszy, najpraw do po dob niej bêdzie bardzo
bliski op ty mal nej ko relacji. Jakoœæ ko relacji mier zona jest za po -
moc¹ wspó³czyn nika nie po do bieñstwa próbek. Koñcowy wynik
dzia³ania omawia nego pro gramu przed stawi any jest w postaci
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Fig. 11. The re sult of cor re la tion of rec ords pre sented in Fig. 9,
how ever, stan dard ized within rec ords. The re sult clearly dif fers
from that from Fig. 10. If data are treated as pre cisely meas ured,
than this re sult should be treated as closer to the true cor re la tion

Fig. 12. The re sult of cor re la tion of four paly no logi cal pro files
from cen tral Po land. Pa rame ters of analy sis are visi ble in the ap -
pli ca tion “win dow” in Fig. 13



grafic znej, w postaci pew nej (za danej) lic zby linii ³¹cz¹cych po -
dobne poziomy. Lic zba ko re low anych pro fili, próbek i zmien nych 
zale¿y je dynie od wielkoœci pa miêci kom putera. Czas ob lic zeñ

zawsze mo¿na dowol nie ogranic zyæ, jed nak warto wtedy spraw-
dziæ sta bil noœæ uzys kanego wyniku.
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Fig. 13. The layout of the MultCorr application


