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Abstract: It is frequent task to correlate profiles or cores basing on different measurements performed on the
series of samples. The difficulty arises when there are many profiles and none is the main or reference one. The
reason is that the number of possible correlations grows exponentially with the number of profiles. To resolve the
problem a Monte Carlo method is adopted here, what makes it very probable to discover the best correlations in a
reasonable amount of computing time. The quality of a correlation is measured by a metric of dissimilarity of the
samples. The final result, given in graphical form, has a form of lines connecting correlative samples from
different profiles. The number of lines (correlations across profiles) is user-defined and can vary from one to
dozens. The number of profiles, samples, and variables depends only on the computational resources. Large
problems need longer computation times to achieve stable results.
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INTRODUCTION

Probably, the most frequently occurring piece of nu-
merical data in geology is a record of measurements pre-
formed along (as a rule vertical) profile, or core (well-log).
Since typically many features (variables) are investigated,
the record is multidimensional. Having two or more “paral-
lel”, neighbouring profiles, with the same measurements
performed, it is natural to correlate them. While there are
many methods of correlation of two profiles (Birks, 1986),
the more difficult is to correlate many (three, tens) of pro-
files. Such a task can be reduced to many correlations of two
profiles, when one of profiles can be treated as the main
one. However, if there were no geological reason for treat-
ing one profile as reference, such solution would introduce
a subjective bias into the resulting correlation. Moreover,
sequential correlation of profiles with the reference one ne-
glect the mutual information connected with each pair of
profiles. If there are NP profiles, there are NP-1 correlations
with the reference profile, while there are as many as
NP*(NP-1)/2 correlations of different pairs of profiles.

In fact, if there is array of many profiles, parallel in
sense of importance, to be mutually correlated, the numeri-
cal method used have to mirror the geological situation, i.e.
to find the general correlation, which is the best one for all
the profiles, at the same time.

Computational difficulties arising with the fast increase
of amount of possible correlations with the number of pro-
files (NP) are overcome by the use of approximate Monte
Carlo method. While the random method, in case of very
large problems (many long profiles with many features),
can not assure that the found solution is really the best one,
the correlation probably will be close to optimal. For small
and medium size problems (depending on computer re-
sources), finding of the best correlation is very probable.

The described below algorithm is implemented in pro-
gram MultCorr (see Fig. 1) (Nalepka, 2005).

STRUCTURE OF DATA FOR ANALYSES

A basic data unit here is a spreadsheet or a table with
NV variables and NL levels or samples taken from a single
profile. The variables (measurements of different features of
sampled material), as a rule, are ordered in columns; the
samples are ordered in rows. For the computer application
described here, the first column should contain depths of
samples, and the first row variable names. Identifiers
(names) of variables must be consistent in all the correlated
profiles. Some variables may be absent for some profiles;
the order of variables in the tables does not matter. The lev-
els are ordered stratigraphically, what is natural.
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Consistent variable names enable definition of “a set of
variables” to be used in calculations. Trying different vari-
ables in correlating profiles (the question of “feature selec-
tion”; Guyon & Elisseeff, 2003) seems to be crucial in many
fields of applications. Variables are assumed to be quantita-
tive or almost quantitative; however, there is no strict con-
straint in that point.

THE PROBLEM

There is a number (NP) of records (tables, profiles) to
be correlated. All profiles, in principle, should contain cor-
relative horizons, i.e. samples to be found as similar. If one
or a few profiles are completely different than most of oth-
ers, the result will be skewed.

There is no limit for the number of profiles to be corre-
lated, other than memory resources for storing them. Of
course, the computing time is increasing with increasing
NP. However, even for large NP (dozens) provisional calcu-
lations can be fast. To achieve more precise and stable re-
sults, longer computing times would be necessary. Gener-
ally, the precision of the results seems to increase logarith-
mically with the number of trials (nT — user defined main
parameter, roughly proportional to the computing time).

The sense of correlation or synchronization of profiles,
expressed graphically, that is in appropriate levels, in all
profiles, are to be connected by lines (Fig. 1). Lines con-
necting the most similar samples, one from each profile, at
the same time divides all the profiles. In the following text,
such line is referred to as a division. After the first division
is found, the next one can be searched for. The obvious con-
straint is that lines connecting samples can not cross one an-
other. They can have common samples (the lines can touch),
but all samples from one division must be older or younger
than those from the other division (except for possibility of
common samples). Number of divisions (ND) is a user-
defined parameter; it can be set from 1 to 100.

In the simplest approach, the first connection joins the
most similar samples; the second one is less optimal, and so
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Fig. 1. Examplary correlation of three (NP = 3) very short pro-
files. The number of divisions ND = 3. Lines of correlations can
“use” one sample twice (here, the bottommost sample from Os
94-5) or many times; however, they cannot cross one another
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on. Such an algorithm would work quite fast. However,
searching, in consecutive steps, for increasingly unimpor-
tant division is not a good method, because it does not re-
flect reality.

Crucial for the algorithm described below is an assump-
tion that there is no natural hierarchy of divisions.

The main idea is to divide profiles in a synchronized
way by connecting the most similar samples, where “the
most similar” refers to the total measure of similarity of
samples within groups (ND groups of NP samples in each
group). In the case of sequential algorithms, previous divi-
sions would block off newer ones, because natural restric-
tion does not allow divisions to cross one another. Thus, the
resulting total similarity would not be maximal.

CRITERION OF GOODNESS
OF CORRELATION

For any pair of levels (samples), the dissimilarity coef-
ficient (DC) can be calculated (Gower & Legendre, 1986;
Maher, 1998). The simplest form of DC is the sum, over all
variables included, of absolute values of difference between
the values from the first and the second profile. It is the so-
called Manhattan metric (Maher, 1998), because it resem-
bles distance from one point to the other to be walked in the
rectangular net of streets. Such a definition is adopted in the
algorithm; however, with possible application of different
data transformations. The variety of possible other defini-
tions of DC (e.g., Euclidian — square root of sum of squares)
will not be discussed here, because they are computationally
irrelevant to the main concept of algorithm.

It is necessary to note that scaling of variables is impor-
tant for DC, if distances for different variables are to be
summed up. For example, for one variable distance between
samples is measured in [gm'3], because the variable refers to
density, while for the other variable, grain size, it is meas-
ured in [mm]. Numerical addition of values measured in dif-
ferent units must be carefully performed. If one variable has
values of the order of 100 and the other 0.01, then the influ-
ence of the second variable on the resulting DC value will
be completely negligible. The simple way to manage such
situations is to standardize variables (see below, Transfor-
mation of variables).

The quality of correlation of NP profiles by ND lines
(divisions) is measured by the value of total DC. The ele-
mental DC is calculated for the pair of samples. The total
DC is the sum of DCs for all pairs of samples, provided that
both samples in each pair came from the same division. For
one division there are NP*(NP-1)/2 pairs of samples, so the
number of involved DCs is ND* NP*(NP-1)/2.

Taking into account the number of variables (NV) used
in calculation of the elemental DC, the number
NV*ND*NP*(NP-1)/2 of differences (the most deeply ele-
mental DC) is involved. This number is used for normaliza-
tion of the total DC, to make it comparable among different
analyses (under the assumption that variables were normal-
ized or that they are of similar nature).
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THE ALGORITHM FOR SEARCHING
THE LOWEST TOTAL DC

Number of possible correlations

In case of one division only (ND = 1), and profiles of,
say 100 samples each, the total number of possible divisions
is 100N*1. For five profiles (NP = 5), this number is 10°.
Since in the calculation of DC for one (trial) correlation
about NV*(NP-1) subtractions are involved, the time of
computation needed to check all possible correlations
would be of the order of an hour (assuming NV = 100, and
typical 3GHz PC).

For more divisions (ND>1), the number of operations
rises very fast with ND, easily approaching non-realistic
computing time. The solution then would be the application
of the Monte Carlo method (e.g., Robert & Casella, 1999).
However, for not very low NP, ND, and number of samples,
simple Monte Carlo trials (of randomly chosen correlations)
can, in a realistic timeframe, check only little percentage of
all possibilities. This is why some compromise has been
adopted in the present algorithm.

The algorithm

Starting description from the most deeply nested pieces
of the algorithm, the following operations are performed.

(1) All of the NP profiles are numbered randomly. It is
assumed that no one profile is a reference one, and all the
profiles are of equal importance. In the following text, the
notion “first profile”, “second”, and so on, refers to the ran-
dom order.

(2) From the first profile, the sample is randomly se-
lected from those not yet used in any previously performed
division. The uniform probability distribution is used, so all
samples have equal probability of being selected.

(3) If it is not the first division, one has to recognize to
which section of the profile the selected sample belongs.
Since profiles are assumed to be in the stratigraphical order,
divisions can not cross one another. Samples from the sub-
sequent profiles will be considered only from this, appropri-
ate section.

(4) In the second profile (or in its fragment), the sample
is searched for the lowest DC with the sample already se-
lected in the first profile. Either all possible samples, or only
a given number of randomly selected samples are being
checked. That last option, application of which is up to the
user, is for limiting computation time in case of large prob-
lems.

(5) Repeat point (4) for the next profiles. However,
starting from the third profile, for calculation of elemental
DC, instead of simple values of variables, the average val-
ues calculated for already connected samples are used and
compared with simple values from the actual profile. At this
step, it is possible to apply a “penalty” for overly close divi-
sions. The value of DC is multiplied by a factor (1+
penalty/(1+distance)1/ 2), where distance is the number of
samples between divisions in the considered profile, and
Penalty is a user-defined parameter.

(6) The obtained DC is checked if it is lower than the
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formerly obtained lowest value. If it is lower, then its value
is remembered, as well as the related division, for use in the
higher-level steps of the algorithm.

(i) According to the idea of Monte Carlo trials, the steps
(1)—(6) are repeated many times. Let, that number of trials in
the nested loop is denoted by nTj. The lowest obtained DC
is recorded, as well as the related (optimal) division.

(i1) The point (i) is repeated ND times to complete all
divisions required by the user. The total (at this stage) DC is
calculated. The calculation is as follows: within each divi-
sion, elemental DCs for all pairs of samples from different
profiles are calculated ( NP*(NP-1)/2 pairs) and summed
up. This is repeated for all ND divisions, and in total DC all
elemental DCs are summed up. In the calculation of the total
DC, all profiles and all divisions are of equal statistical
weight.

(iii) The point (ii) is repeated many times (nTy —
number of trials in the outer loop). The lowest obtained total
DC is recorded, as well as the related correlation. This cor-
relation (comprising ND divisions) is the final one.

Parameters of the algorithm

The main parameter of the algorithm it is the number of
Monte Carlo trials (nT, or Number of Trials in the program
interface). Computing time increases linearly with the
number of trials. A practical option in the program is to de-
clare a time limit. The trials are stopped when the time limit
is reached.

The user-defined nT is then recalculated into two num-
bers mentioned in the previous paragraph: nT1 and nT,. The
ratio of nTo/nT; is also user-defined (Main/Sub-trials).
While a larger Number of Trials give higher precision, the
second parameter affects the calculations less clearly. Its
value (default = 1) can be adjusted experimentally. How-
ever, it seems to be important only for large data sets (see
the discussion below, in Exemplary results of correlation —
Artificial data). Generally, higher values of Main/Sub-trials
increase the probability of obtaining the best correlation, but
also increase the number of trials (i.e. computing time);
whereas lower values assure good results in a reasonable
amount of time even for very large data sets.

The next parameter has a goal similar to the previous
one: limiting computing time without degradation of reli-
ability. Instead of checking the DC value for all samples (in
step (4) of the algorithm), only a few randomly selected
samples are checked. The number of samples to be checked
is set by the user as a value of the parameter 77y samples
(the default value is All).

In case of multiple divisions (ND>1) it is possible to en-
force avoidance of overly close divisions. If, in every pro-
file there are small fragments similar to each other, then all
divisions (sample connections) can (optimally) be indicated
in those fragments only, although other fragments might be
interesting as well. The parameter Penalty for too close can
help in such a case (Fig. 2).

The last parameter, Number of divisions (ND), unlike
the previously described ones, is “visible” in the result. It is
the number of divisions of profiles, or number of connec-
tions between samples from different profiles. It is worth
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The effect of the application of parameter Penalty for too close. The left graph — zero penalty, the right graph — penalty equals

0.5. The left graph does not illustrate the optimal correlation since in case of zero Penalty all three divisions should be identical

mentioning again that the algorithm operates in such a way
that there is no order of importance in divisions. As a result
we get ND divisions, which are the best in general (at least
close to the best, since the algorithm is not deterministic).

TRANSFORMATION OF VARIABLES

Variables are, as a rule, to be standardized, since the
dissimilarity coefficient (DC) is calculated over many vari-
ables. Standardization is not necessary, and if no applied
variables of higher variability (standard deviation) will sim-
ply weight more in the analysis. Of course, in case of differ-
ences as high as an order of magnitude, the smaller range
variables would have almost no influence on the calculated
DCs.

Other type transformation of data can be applied to
achieve some special effects. For example, square root
transformation diminishes relatively the influence of high
values, what may be desirable from some point of view.

Variables standardization (two kinds)

Standardization of a variable consists of recalculation
of its values by subtracting the average value, and dividing
the result by the standard deviation of that variable. The re-
sulting standardized variable has zero mean and unit stan-
dard deviation. Such a transformation operates well for nor-
mally distributed variables, or variables not too far from
normality. In geology, variables are frequently positively
skewed, and could be “normalized” by taking logarithm (if,
in place of possible zero values, a reasonable detection limit
can be used — what is impossible, for example, in counting
individuals of some kind).

There is a certain number of profiles (NP) in the analy-
sis, and each profile has a certain number of samples.

Standardization can be performed separately, within in-
dividual profiles, or globally, as single standardization for
all values (of a given variable) from all profiles. The first
approach is better if, for example, one profile has generally
lower values in some variable. Since it would be impossible
to find similar values in other profiles, in such a case, it
would be better to standardize each profile to the same zero
mean and unit standard deviation. However, important in-
formation can be lost in such a transformation. A profile
with generally low values may be actually synchronous
with part of other profile, which in other parts has high val-
ues. When standardization is made separately for such indi-
vidual profiles, finding proper correlation can be difficult, if
not impossible. That is the reason for the second kind of
standardization, over all profiles.

Global standardization (right graph) changes nothing
but the order of magnitude of values, which is sensible only
in comparison with other variables.

Global standardization of variables, along all the pro-
files, does not change the relations between profiles (com-
pare the left and the right graph in Fig. 3). The only reason
for such transformation of the variables is to make them in-
tercomparable, which is important in DC calculation. If it is
assumed that the variables from Fig. 3 have, in both pro-
files, correct, representative values, it means that the three
bottommost samples from the first are similar to the three
uppermost samples from the second. In such a case, no
transformation or global standardization should be used.
However, if values in the first profile are only accidentally
lower (for example, because of incorrect measurement cali-
bration), then separate standardization within the profiles
can help (middle graph in Fig. 3).
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Fig. 3.  The effect of the variable standardization. The values of
one variable from two profiles are plotted. The original values (left
graph) in one profile are smaller than in the other. After independ-
ent standardization within profiles (middle graph), the profiles be-
came very similar. Global standardization (right graph) changes
nothing but the order of magnitude of values, which is sensible
only in comparison with other variables

Square root transformation

A square root transformation is especially applicable to
counts of some individuals, like pollen grains or other kind
of remains. A zero value has a special meaning in such a
case (lack of evidence), and cannot be replaced by an arbi-
trarily low value (as in the log transformation). On the other
hand, while some variables have a few counts, some others
can have thousands. The generally small amount of indi-
viduals in some variable (taxon), by no means indicates a
low significance of this variable. However, simple stan-
dardization is seldom applied in such cases (Birks & Gor-
don, 1985). Sqrt (Square root) transformation is typical
(Prentice, 1980).

The Sqrt transformation (Fig. 4) influences both the in-
ner variable relations (between samples) and the relations
between variables. The first effect is a by-product (which
does not skew the final result); the second is the main goal
of the transformation. The main idea of Sgrt can be exempli-
fied numerically: while the two differences 9-0 =9, and 9-1
= 8, differ only by 12%, after data transformation they are
3-0=3 and 3-1= 2, and differ by 40%.

Selection of variables

Selection of variables to be used by the algorithm is es-
sential for the final result. However, use of one variable in-
stead of another is not in the strict sense a variable transfor-
mation; it can be treated as a kind of transformation of data
for analysis.

In the computer program which implements the de-
scribed algorithm, no method for automatic variable (fea-
ture) selection (Guyon & Elisseeff, 2003) is proposed, since
there is no single clear criterion of “a good fit” in the prob-
lem of profiles correlation. In fact, selection of variables (as
well as data transformations) can be recommended as a tool
to obtain an interpretable result. A priori information about
variables can not be ignored. The charge of subjectivity in
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Fig. 4. In the right graph is presented the effect of the Sgrt
transformation of values (two variables) from the left graph. After
transformation statistical weights of the variables with low and
high values become comparable

analysis can not be avoided in any non-trivial problem. On
the other hand, it is impossible to obtain any desired correla-
tion by manipulating the variables. Application of numeri-
cal algorithm imposes a significant amount of objectivity
onto the analysis.

Smoothing window

For geological profiles autocorrelation of samples is
typical. It means that the neighbouring samples are, as a
rule, similar. That fact can be useful for correlation of pro-
files, especially in case of noisy data, i.e. if the “signal” to
be used in analysis is hidden, to some extent, by the noise of
different origin (as in. e.g., Fig. 5). The noise, or at least
some part of it, is not auto-correlated; averaging neighbour-
ing samples can improve the “signal to noise” ratio.

The parameter Smoothing window is the number of
neighbouring samples to be added to the one actually con-
sidered (in DC calculation). In fact, the weighted average is
calculated, with the “triangular” weights. For example, for
Smoothing window = 1 the weights are: 1/4, 1/2, 1/4, for
Smoothing window = 2, the weights are: 0.111, 0.222,
0.333,0.222,0.111. The highest weight is given to the actu-
ally considered sample. The effect of smoothing for the cor-
relation is illustrated in Fig. 6.

EXEMPLARY RESULTS
OF CORRELATION

Artificial data

Let five records (NP = 5) of 100 samples each (Fig. 7)
consist of NV = 30 variables (the last, of course not visible
in the figure). The data are random numbers from a uniform
distribution in the interval (0, 1). As a result, no “true” cor-
relation exists in those records.

The result of correlation given in Fig. 7 is obtained for
modified data. Simply, the sample Nr 10 from the first rec-
ord, the sample 20 in the second record, 30 in the third, 40 in
the fourth, and 50 in the fifth record are set identical. As a
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Fig. 5. Exemplary data for presentation of the Smoothing win-
dow option. There are two profiles (indicated by different point
signatures), with two variables, nearly monotonously changing
along the profiles. In case of both variables, the values in both pro-
files are similar along the profiles, but the presence of noise make
precise correlation difficult

result, very strong “true” correlation exists in the data. The
described algorithm can search for such a correlation. Using
“illegal” a priori information that there is one level in each
record similar to some level from other records, the number
of divisions is chosen to be ND = 1. Correct correlation is
obtained in computing time of about a second for 1,000 tri-
als. In as low a number as 100 trials, half of the obtained re-
sults indicate the proper correlation.

More interesting is correlation of records of strictly ran-
dom data, with no correlation. Anyway, there are more simi-
lar samples among records and also the most similar ones
(with the lowest DC).

Using such data the influence of the parameter nT2/nT)
(Main/Sub-trials) has been investigated. Sub-trials should
help when large problems are to be solved in reasonable
time. However, in case of medium-size problem and long
computing time, use of too many sub-trials is a danger (Fig.
8). If there are very many sub-trials, it can happen that in
every main trial the same “best” correlation will be found.
As a result, the repetition of main trials would be fruitless
waste of computing time. In case of more than one division
(ND>1), the best first correlation can exclude the best sec-
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Fig. 6.  Correlation of the records from Fig. 5 (ND = 5). The pa-

rameter Smoothing window is set equal to 0, 1, and 3, from the left
plot to the right one. In the ideal correlation lines of divisions are
expected horizontal

on= So0s T So0= So0s

Fig. 7.  Artificial example based on random profiles with one
sample common for all profiles. Correct correlation is presented

ond one, because of possible crossing. The main trials (nT2)
are necessary if the best set of ND correlations is to be
found.
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[Nlustration of the danger when too many sub-trials (too low value of parameter nT2/nT1 = Main/Sub-trials) are applied. For

large number of trials (here million) the final DC value may be not the lowest one. The general dependence of average DC and its stability
(standard deviation) on the number of trials is shown. The parameters were: ND =3, nT2/nT1 =1, NP =5, NLi.5 = 100, NV= 30, and uni-
formly distributed random data were used. The result for nT2/nT| = 10 is given for comparison; beside the average value also the best one

is shown (the slightly lower triangle)

Simple exemplary data (Hawaii)

Typical approach to the numerical data analysis con-
tains a kind of comparison of three entities: row data, sub-
jective opinion on the geological situation, and the statisti-
cal result itself. Since the subjective element is very impor-
tant, it is impossible to give really good example, because it
should be based on the reader data, what is impossible.

The data used here (Wessel, 2003) consist of only two
variables, what makes it easy to visualize data in extenso
(Fig. 9). In case of one variable the correlation is trivial.
However, also in the case of two variables, and seven rec-
ords, it is clear that correlating records basing on the row
data (Fig. 9) is almost impossible.

Data are rather smooth, i.e. not noisy, what results in
clear correlation (Fig. 10). Even the application of relatively
high Penalty for too close would not influence the analysis
enough to indicate more correlative levels. However, other
kind of standardization of variables results in systematically
moved correlation (Fig. 11).

Real data (Quaternary plant pollen counts)

The pollen counts, in the Holocene and the Late Glacial
palynological analysis, are integer numbers ranging from 0
to hundreds or more. Typical pollen tables have 100 rows

(samples) and 100 columns (variables, pollen taxa). Typical
for that kind of data is that some taxa (pine, birch) are abun-
dant, while some others (lime, wheat), by no means less im-
portant, are poorly represented by a few pollen grains only.
So the square root transformation is applicable here.

Four profiles from Central Poland were used in the
analysis: Lake Gopto (Jankowska, 1980), Lake Gosciaz
(Ralska-Jasiewiczowa et al., 1989), Ostonki (Nalepka,
2005), and Lake Steklin (Noryskiewicz, 1982). From the
taxa present in the pollen tables (almost 300 in case of Lake
Gosciaz), the number of NV = 21 is used (4Artemisia, Betula
nana-t., Betula, Carpinus betulus, Cerealia undiff., Cheno-
podiaceae, Corylus avellana, Fraxinus excelsior, Hip-
pophaé rhamnoides, Juniperus communis, Larix, Pinus
cembra-t., Pinus sylvestris, Pteridium aquilinum, Quercus,
Rumex acetosalacetosella, Salix polaris-t., Selaginella se-
laginoides, Tilia undiff., Ulmus, Urtica undiff.). The choice
of taxa is in principle based on the a priori ecological
knowledge, and on the goal to be achieved (Holocene or
Late Glacial is to be correlated). However, modification of
set of taxa after obtaining initial results seems not to be in
contradiction with the ideal of objectivity of numerical
analysis.

As customary in palynological analysis, data were
transformed into percentages within sample — pollen spec-
trum. Since the percentage calculation is not trivial here (the
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Fig. 9. Exemplary data (available in www, Wessel 2003).
Seven records of different number of samples from the region of
Hawaii. Two variables, which data consist of, are presented in
separate plots. Data are standardized (within records) since vari-
ables differ by almost one order of magnitude

question of base for 100%), it was performed using the
POLPAL program (Nalepka & Walanus, 2003; Walanus &
Nalepka, 2004), dedicated to pollen counts handling.

The result of correlation obtained for as many as ND=
15 divisions (Fig. 12) is clear. Evident is the synchronous
fragment in the lower part of profiles (Late Glacial). The up-
per parts were probably under deeper local influence, and
appear not so similar. However, a correction of the taxa set
used in correlation could help to correlate the Holocene
part, as long as respective sections are present in all profiles
(cf. Nalepka, 2005).
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Fig. 12. The result of correlation of four palynological profiles
from central Poland. Parameters of analysis are visible in the ap-
plication “window” in Fig. 13

Streszczenie

KORELACJA NUMERYCZNA
WIELOWYMIAROWYCH DANYCH DLA KILKU
PROFILI GELOGICZNYCH

Adam Walanus & Dorota Nalepka

Korelowanie dwoch lub kilku sekwencji probek z profilu, na
podstawie wynikow réznych pomiarow wykonywanych dla
probek, jest jednym z najczgéciej wykonywanych zadan. Jednak w
sytuacji korelowania wigkszej liczby rownorzednych profili, ze
wzgledu na wyktadniczo rosnaca z liczba profili liczbg mozliwych
korelacji, zadanie staje si¢ trudne. Zaproponowane rozwiazanie
ograniczenia czasu poszukiwania najlepszej korelacji wykorzys-
tuje metodg Monte Carlo. Otrzymany wynik korelowania, aczkol-
wiek niekoniecznie najlepszy, najprawdopodobniej bedzie bardzo
bliski optymalnej korelacji. Jakos$¢ korelacji mierzona jest za po-
moca wspolczynnika niepodobienstwa probek. Koncowy wynik
dziatania omawianego programu przedstawiany jest w postaci
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¥ Correlation of many multidimensional profiles
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Fig. 13. The layout of the MultCorr application

graficznej, w postaci pewnej (zadanej) liczby linii taczacych po- zawsze mozna dowolnie ograniczy¢, jednak warto wtedy spraw-
dobne poziomy. Liczba korelowanych profili, probek i zmiennych dzi¢ stabilnos$¢ uzyskanego wyniku.
zalezy jedynie od wielkos$ci pamigei komputera. Czas obliczen



