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Abstract: The Upper Triassic Chinle Formation in the Stevens Canyon area in south-eastern Utah represents
fluvial, palustrine, and lacustrine strata deposited in a continental back-arc basin on the western edge of Pangea.
Previous investigations interpreted a megamonsoonal climate with increasing aridity for the Colorado Plateau
towards the end of the Triassic. In this study, we systematically integrate ichnological and pedological features
of the Chinle Formation into ichnopedofacies to interpret palacoenvironmental and palaecoclimatic variations in
the north-eastern part of the Chinle Basin. Seventeen ichnofossil morphotypes and six palaeosol orders are com-
bined into twelve ichnopedofacies, whose development was controlled by autocyclic and allocyclic processes
and hydrology. Ichnopedofacies are used to estimate palacoprecipitation in conjunction with appropriate modern
analogue latitudinal and geographic settings. In the north-east Chinle Basin, annual precipitation was ~1100-1300
mm in the Petrified Forest Member. Precipitation levels were >1300 mm/yr at the base of the lower Owl Rock
Member, decreased to ~700—1100 mm/yr, and then to ~400—700 mm/yr. Two drying upward cycles from ~1100
mm/yr to ~700 mm/yr occurred in the middle and upper part of the Owl Rock Member. In the overlying Church
Rock Member, precipitation decreased from ~400 mm/yr at the base of the unit to ~25-325 mm/yr at the end of
Chinle Formation deposition. Ichnopedofacies indicate monsoonal conditions persisted until the end of the Triassic
with decreasing precipitation that resulted from the northward migration of Pangea. Ichnopedofacies in the north-
east Chinle Basin indicate both long-term drying of climate and short-term, wet-dry fluctuations.
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INTRODUCTION
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Analyses of ichnofossils and palaeosols provide a wealth
of hydrological and climatic information in continental sed-
imentary deposits (e.g., Driese and Foreman, 1992; Turn-
er, 1993; Hasiotis and Dubiel, 1994; Driese et al., 1995;
Birkeland, 1999; Kraus, 1999; Retallack, 2001; Driese
and Mora, 2002; Prochnow et al., 2006a; Hasiotis et al.,
2007a, Cleveland et al., 2008a; Dubiel and Hasiotis, 2011;
Hasiotis and Platt, 2012). This study combines lithofacies,
palaeosols, and ichnocoenoses of the Upper Triassic Chin-
le Formation (Fm) into ichnopedofacies to interpret palae-
oenvironmental conditions and palaeoclimatic changes in
the north-east Chinle Basin. These interpretations, in turn,
will enable more detailed reconstructions of the variability
in sedimentation rate, tectonics, and climate across the ba-
sin, building a more accurate regional picture of the Chinle

Fm through the Late Triassic. This is the first study to sys-
tematically integrate ichnological and pedogenic features
in the Chinle Fm to determine local controls on base level,
sediment deposition, pedogenesis, groundwater profile,
and environments.

Palaeosols record the relative influence of soil-forming
factors — climate, organisms, topography, parent material,
and time (Jenny, 1941) — that modified sediments depos-
ited on ancient landscapes (e.g., Retallack, 2001; Hasiotis,
2004, 2008; Hasiotis and Platt, 2012). Ichnofossils form
through the interaction of organisms with a medium to
produce three-dimensional structures influenced by such
physiochemical factors as sedimentation rate, deposition-
al energy, groundwater profile, nutrients, and oxygenation
(Hasiotis, 2007; Hasiotis et al., 2007a; Hasiotis and Platt,
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2012). Combinations of these factors, unique to different
depositional settings, are indicated by ichnocoenoses (ich-
nocoenosis, singular), co-occurring ichnofossil assemblag-
es representing an ancient biological community interacting
with the environment (Hasiotis et al., 2012; Hasiotis and
Platt, 2012), that are useful for identifying continental sub-
environments (e.g., Hasiotis, 2004, 2008; Hasiotis et al.,
2007a, 2012; Smith et al., 2008b; Hasiotis and Platt, 2012).
Combining ichnology and palaeopedology to develop ich-
nopedofacies models — associations of ichnocoenoses and
pedogenic features (Hasiotis et al., 2007a) — allows for
higher resolution interpretations of physiochemical condi-
tions and soil-forming factors in the north-east Chinle Basin
during the Late Triassic.

Pedological and ichnological studies in the Chinle Fm
have been limited in scope. Local investigations of Chinle
Fm palaeosols have concentrated in the centre of the Chinle
Basin around the Petrified Forest National Park (PFNP; e.g.,
Kraus and Middleton, 1987a; Therrien and Fastovsky, 2000;
Trendell et al., 2012, 2013a, b; Atchley et al., 2013), with
other studies in northern New Mexico (Cleveland et al.,
2007, 2008a, b), western Colorado (Dubiel ez al., 1992), and
eastern Utah (Prochnow et al., 2005, 2006a, b). Much of this
research utilized palaeosols to interpret fluvial architecture
and sequence stratigraphy, showing that local fluvial evolu-
tion, topographic position, and salt tectonics had as great an,
or even greater, influence on sedimentation and pedogenesis
as did regional climate (e.g., Kraus and Middleton, 1987a;
Prochnow et al., 2005, 2006b; Cleveland et al., 2007; Tren-
dell et al.,2012,2013a). Few palacosol studies in the Chinle
Fm, though, have been combined with ichnological obser-
vations beyond plant ichnofossils (e.g., Dubiel et al., 1992;
Cleveland et al., 2008a; Dubiel and Hasiotis, 2011; Ash and
Hasiotis, 2013). Despite numerous descriptions of ichnofos-
sils from PFNP (e.g., Hasiotis and Dubiel, 1993a, b, 1995a,
b; Martin and Hasiotis, 1998; Hasiotis and Martin, 1999),
research beyond this area of the basin is limited (e.g., Hasi-
otis and Mitchell, 1993; Hasiotis et al., 1993; Hasiotis and
Dubiel, 1994; Hasiotis, 1995; Gaston et al., 2003; Gillette
et al.,2003), and few studies have established detailed local
ichnocoenoses (Hasiotis and Dubiel, 1993b). More thor-
ough studies combining ichnological and palacopedological
observations are imperative to interpret fine-scale climatic
conditions across the Chinle Basin.

The main objectives of this study are to: 1) determine the
variation of depositional systems and palacoenvironmental
settings; 2) establish ichnopedofacies and physiochemical
conditions; and 3) interpret fine-scale (within member)
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climatic conditions in the north-eastern Chinle Basin and
compare it to the regional palaeoclimate of the south-west-
ern United States. This type of detailed sedimentological
study is needed to more accurately interpret the spatial and
temporal differences in sediment deposition, continental
subenvironments, and climate between the edge and centre
of the Chinle Basin during the Late Triassic.

GEOLOGIC SETTING

The Upper Triassic Chinle Fm was deposited in a con-
tinental back-arc basin on the western edge of Pangea be-
tween 5-30° N palaeolatitude (Fig. 1A; Van der Voo et al.,
1976; Dickinson, 1981; Parrish and Peterson, 1988; Bazard
and Butler, 1991). Pangea migrated north during Chinle Fm
deposition and the Colorado Plateau region reached 30° N
palaeolatitude by the Early Jurassic (e.g., Dubiel and Hasi-
otis, 2011). The dominant drainage was to the north-west,
and palaeoriver systems sourced from the Ouachita orogen
in Texas flowed through both the Dockum and Chinle basins
(Dubiel, 1994; Riggs et al., 1996; Dickinson and Gehrels,
2008; Dubiel and Hasiotis, 2011). Sediment sources were
the Uncompaghre Uplift, Amarillo-Wichita Highlands, and
a magmatic arc on the western coast of Pangea that also
supplied ash to the basin (Fig. 1A; e.g., Stewart et al., 1972,
1986; Blakey and Gubitosa, 1983). Concurrent salt tecto-
nism in the Salt Anticline Region of eastern Utah and west-
ern Colorado locally affected fluvial architecture, deposi-
tional geometries, and palaeosol development (Cater, 1970;
Hazel, 1994).

The Chinle Fm consists of, in ascending order, the Shi-
narump (SM), Monitor Butte (MB), Moss Back (MM), Pet-
rified Forest (PFM), Owl Rock (ORM), and Church Rock
(CRM) members, and has a maximum thickness of over 500
m in the southern Four Corners area, thinning to the north-
west and north-east (Fig. 1D; Stewart ef al., 1972; Dubiel,
1987, 1989; Dubiel et al., 1989; Dubiel, 1994). Chinle Fm
strata are separated from the Lower to Middle (?) Triassic
Moenkopi Fm by the T-3 unconformity across the majori-
ty of the Colorado Plateau, and unconformably overlie the
Lower Permian DeChelly Sandstone in northern Arizona
(Stewart et al., 1972; Pipiringos and O’Sullivan, 1978; Du-
biel and Hasiotis, 2011). The J-0 unconformity marks the
boundary between the Chinle Fm and the overlying Low-
er Jurassic Wingate Sandstone (Pipiringos and O’Sullivan,
1978; Dubiel, 1994; Hazel, 1994).

During the Late Triassic, deposition in the Chinle Basin
was influenced by a megamonsoonal climate with wet and

Palacogeography, stratigraphy and location of the study area in south-eastern Utah (USA). A. Palacogeography map, major

patterns of fluvial systems and sediment transport, and tectonic setting of the Western Interior during Chinle Fm deposition (modified
from Dickinson, 1981; Blakey, 1989; Dubiel, 1989, 1994; Riggs et al., 1996). Red star marks the study area. B. Field location map in
south-eastern Utah. Red box is location of map shown in C. C. Map of Stevens Canyon, Indian Creek Canyon, and Canyonlands National
Park. D. Generalized stratigraphic column of Chinle Fm in south-eastern Utah, with major unconformities. Red box outlines the mem-
bers studied. White balloons are measured sections: S1 — Stick section 1, S2 — Stick section 2, S3 — Stick section 3, S4 — Stick section 4,

S5 — Stick section 5, S6 — Stick section 6, SW — south-west measured section, W — west measured section, E — east measured section.
E. Stevens Canyon at S1: Moss Back Member (MM)), Petrified Forest Member (PFM), Owl Rock Member (ORM), Church Rock Member

(CRM); Chinle Fm overlain by Wingate Sandstone (Wg).
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dry periods (Parrish and Peterson, 1988; Dubiel et al., 1991,
Dubiel, 1994; Dubiel and Hasiotis, 2011). Conditions be-
came more arid towards the end of Chinle Fm deposition,
represented by eolian sand sheet and playa lake strata in the
CRM and equivalent Rock Point Member (RPM) (Dubiel,
1989; Dubiel et al., 1991; Dubiel and Hasiotis, 2011). Chin-
le Fm sediments were eventually buried by migrating sand
dunes of the Lower Jurassic Wingate Sandstone (Blakey and
Gubitosa, 1983; Parrish and Peterson, 1988; Dubiel, 1989).
The transition to drier conditions reflects the northward mi-
gration of Pangea towards the mid-latitudes (Dubiel, 1994,
Cleveland et al., 2008b; Dubiel and Hasiotis, 2011).

Study area

The study area is 56 km south of Moab, Utah, near the
south-eastern border of Canyonlands National Park in
Stevens Canyon and Indian Creek Canyon (Fig. 1B, C).
The Upper Triassic Chinle Fm is locally represented by
the MB, MM, PFM, ORM, and CRM (Fig. 1E). The top of
the Chinle Fm is overlain by the Lower Jurassic Wingate
Sandstone (Hasiotis and Mitchell, 1993; Hasiotis et al.,
1993).

The MB overlies and locally fills palacochannels incised
into the SM and unconformably overlies the Moenkopi Fm
(Stewart et al., 1972; Dubiel and Hasiotis, 2011). Only the
top of the MB is present in one section and consists of red,
yellow, and green-grey mudstone. Volcanic ash is a signif-
icant component of sediment, as evidenced by increased
amount of bentonite, altered lithic clasts, and relict glass
shards. The MB is interpreted as a complex mosaic of me-
andering fluvial, palustrine, lacustrine, and deltaic environ-
ments (Blakey and Gubitosa, 1983; Dubiel and Hasiotis,
2011).

The MM is preserved within the Cottonwood Palaeo-
valley, which incised into the underlying MB and Lower
Triassic Moenkopi Fm (Stewart ef al., 1972; Blakey and
Gubitosa, 1983; Dubiel and Hasiotis, 2011). Strata con-
sist of brown to grey, medium-grained sandstone and car-
bonate-nodule conglomerate. Sandstones contain tabu-
lar-planar and trough-cross-stratification (TCS), large-scale
lateral accretion, and rarer horizontal lamination, and sand-
bodies consist of stacked, interconnected, broad sand sheets.
Depositional environments are interpreted as braided fluvial
systems (Blakey and Gubitosa, 1983, 1984; Dubiel, 1989;
Dubiel et al., 1991; Dubiel and Hasiotis, 2011).

The PFM overlies the MB and MB (Stewart et al., 1972,
Dubiel and Hasiotis, 2011). Lithofacies consist of laven-
der and brown, bentonitic sandstone and variegated, car-
bonate-nodule-bearing mudstone. Sandstones display TCS
and lateral accretion, contain thin carbonate-nodule con-
glomerate lenses, and occur as ribbon and narrow sheet sand
bodies encased in mudstone (Blakey and Gubitosa, 1984;
Dubiel, 1987, 1989). Volcanic ash is a significant compo-
nent of clastic sediment. The PFM was deposited in palus-
trine and high-sinuosity, suspended-load fluvial environ-
ments (Blakey and Gubitosa, 1983; Dubiel, 1987; Dubiel
etal., 1991).

The ORM overlies the PFM. Lithofacies consist of or-
ange and red siltstone (Stewart et al., 1972; Dubiel, 1987).
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Intraformational carbonate-nodule conglomerate lenses
derived from adjacent palaecosols are present and display
large-scale, lateral accretion (e.g., Dubiel and Hasiotis,
2011). The ORM was deposited in fluvial and lacustrine
environments (Blakey and Gubitosa, 1983; Dubiel, 1994,
Dubiel and Hasiotis, 2011).

The CRM overlies the ORM. Lithofacies consist of red,
orange, and brown siltstone and sandstone, with sandstone
occurring as broad sheet and ribbon sand bodies with TCS,
ripple-cross-lamination, horizontal lamination, and lateral
accretion (Stewart et al., 1972; Blakey and Gubitosa, 1983,
1984; Dubiel, 1989; 1994). The CRM was deposited in flu-
vial and playa lake environments (e.g., Dubiel, 1987; Dubi-
eletal, 1991).

METHODS AND MATERIALS

Eight sections (Fig. 2) were measured using a 1.5-m-long
Jacobs Staff. Sedimentary facies description included unit
thickness, colour, grain size, grain type, degree of sorting,
sedimentary structures, and bedding morphology (e.g.,
Compton, 1985). Lithofacies were separated according to
grain size, and further subdivided based on dominant sed-
imentary structures (e.g., Miall, 1996; van der Kolk et al.,
2015). Facies associations were assigned according to Col-
linson (1986) and Miall (1996). Chinle Fm units were corre-
lated by walking out lithofacies associations at the outcrop
and by tracing them out from panoramic photos.

Ichnofossils were described by their architectural and
surficial morphology, and internal fill (Hasiotis and Mitch-
ell, 1993; Hasiotis et al., 1993; Bromley, 1996). Ichnofos-
sils were assigned to a category of burrowing behaviour that
reflects spatial position and moisture zone in the soil profile
(Hasiotis, 2000, 2004, 2008; Hasiotis et al., 2007). Epiter-
raphilic behaviour is displayed by ichnofossils constructed
on the surface of the soil profile and include trackways. Ter-
raphilic behaviour is reflected by ichnofossils constructed
above the water table near the surface of the soil-water pro-
file and in the upper vadose zone where soils are well drained
overall. Hygrophilic behaviour reflects burrow construction
above the water table in the upper, intermediate, and low-
er vadose zone. Ichnofossils constructed in fully saturated
conditions at or beneath the water table in the phreatic zone,
or beneath the sediment surface in open bodies of water,
display hydrophilic behaviour. Specific ichnogenera (or ich-
nofossils) can be assigned to more than one category. Ich-
nocoenoses were determined through immediate horizontal
and vertical associations of ichnofossils along stratigraphic
horizons, and named according to the dominant ichnogenus
(or ichnofossil) present.

Palaecosols were described according to Mack et al
(1993), Kraus (1999), and Retallack (2001). Pedogen-
ic observations included matrix colour, mottling colour,
horizonation, soil structures, slickensides, and calcium
carbonate nodules. Colour was determined from fresh
exposure using Munsell soil colour (Munsell Soil Col-
our Book, 2009). Palacosol profiles were subdivided by
horizons and designated as A (upper; zone of eluviation),
B (intermediate; zone of illuviation), and C (lowest; par-
ent material) (e.g., Retallack, 2001; Hasiotis et al., 2007a);
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Lithofacies of Chinle Fm. Staff in 10-cm intervals. Grain size card 15 cm tall. Rock hammer 33 cm long. A. Massive to finely

Fig. 2.

laminated mudstone (F-1). B. Massive siltstone (F-2a). C. Massive siltstone to very fine-grained sandstone (F-2b). D. Planar-laminated
siltstone to very fine-grained sandstone (F-2¢). E. Ripple cross-laminated siltstone to very fine-grained sandstone (F-3). F. Massive fine-
to very coarse-grained sandstone (F-4a). G. Trough cross-stratified (TSC) fine- to coarse-grained sandstone (F-4b). H. Planar-laminat-
ed fine- to coarse-grained sandstone (F-4c). I. TCS conglomerate (arrow) (F-5a). J. Massive to planar-laminated conglomerate (F-5b).
K. Incline-bedded conglomerate (F-5¢). L. Close-up of incline-bedded conglomerate showing pebble-sized quartz and limestone clasts.

Large oncoid clast from incline-bedded conglomerate.

horizons can have shared designations based on pedogen-
ic features present (e.g., AB, BC, AC). Calcium carbonate
stages of accumulation (designated by k) were described
according to Gile et al. (1966) and Machette (1985). Pal-
aeosols were classified as entisols if primary sedimentary
structures were present (Hasiotis et al., 2007a; Dubiel and
Hasiotis, 2011). Inceptisols and calcic inceptisols were iden-
tified as weakly developed with incipient horizonation and
calcium carbonate accumulation (sensu Mack et al., 1993)

similar to stages 1-2 of calcic horizon development (Gile
et al., 1966; Machette, 1985). Inceptisols were differenti-
ated from entisols by a lack of primary sedimentary struc-
tures. Vertisols were identified by slickensides, prismatic
peds, and redoximorphic colouration (Dubiel and Hasiotis,
2011). Alfisols and calcic alfisols were defined as palaco-
sols with elevated clay horizons (sensu Mack et al., 1993)
and carbonate accumulation similar to stages 2—3 of calcic
horizon development (Gile et al., 1966; Machette, 1985).
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Ichnopedofacies were constructed based on the combined
vertical and lateral associations of sedimentary facies, ich-
nofossils, and pedological features (Hasiotis et al., 2007a).
First, the dominant sedimentary facies were described.
Then, horizons were differentiated and the palacosol order
was determined. Next, features of the dominant ichnocoe-
nosis present were incorporated into the pedogenic diagno-
sis. From this, ichnopedofacies were named by combining
the names of the dominant ichnocoenosis and palaeosol (if
present) comprising the unit.

In the laboratory, 22 thin sections (7.62 x 5.08 cm) im-
pregnated with blue epoxy were observed under a Nikon
Eclipse™ E600 POL petrographic polarizing light micro-
scope (1-40x%) with attached digital camera for lithological
description. Pedological micromorphology was described
according to Brewer (1976). Rock samples were also ob-
served under a Nikon SMZ™ 1000 binocular scope (1-8x)
for lithological and ichnological description. Descriptions
from microscope supplemented field observations and aid-
ed classification of sedimentary facies, ichnocoenoses, and
palaeosol orders.

Samples were crushed to under 150 um for X-ray diffrac-
tion (XRD) and X-ray fluorescence (XRF) analysis. XRD
was performed on 76 samples at the University of Kansas
Small Molecule X-Ray Crystallography Lab using a Bruk-
er MicroSTAR™ diffractometer. Qualitative mineralogical
data was collected with a scan rate of three, one-minute runs
from 5-115° 20. Clay mineralogy was determined accord-
ing to Moore and Reynolds (1997). XRD data was used to
determine the clay mineralogy of palacosols and to aid the
identification of clay-rich horizons marking alfisols and cal-
cic alfisols. XRF was conducted at Oneida Research Servic-
es on 30 samples to determine elemental weight percentag-
es; values were mathematically converted to weight percent
oxide and molar ratios. XRF data was used to track changes
in elemental composition in palaeosol profiles and to differ-
entiate palaeosol horizons, especially calcic horizons. Both
XRD and XRF data aided in amending palaeosol classifica-
tions made in the field.

RESULTS

Lithofacies

Five distinct lithofacies consisting of 11 subfacies were
identified from outcrop (Table 1). Mudstone facies contain
units composed predominately of mud-sized grains and
were not subdivided into subfacies. Siltstone subfacies were
subdivided based on the presence of planar lamination and
the relative amount of very fine sand grains (Fig. 2). Sand-
stone and conglomerate subfacies were separated based on
the dominant primary sedimentary structures (Fig. 2).

Ichnology

Seventeen ichnogenera and ichnofossils were identified
(Table 2; Fig. 3). These ichnofossils form nine reoccurring
ichnocoenoses across the north-east Chinle Basin (Table
3). We maintain the use of Steinichnus (i.e., S. carlsbergi,
Bromely and Asgaard, 1979) and reject the synonymy of
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it with Spongeliomorpha (Melchor et al., 2009). We base
our position on morphological criteria that distinguish-
es Steinichnus from Spongeliomorpha. Spongeliomorpha is
the morphological version of Ophiomorpha and Thalassi-
noides, but with strongly longitudinal scratches, in which all
three ichnogenera exhibit a three-dimensional box work or
maze work of interconnected shafts and tunnels with wid-
ened areas were the tracemaker can turn around, differing
only in the use of pellets as a wall lining, no wall lining,
and scratches (i.e., Spongeliomorpha). Steinichnus does not
exhibit any of these morphological features or criteria. In-
stead it is a horizontal, flattened cylinder (oval in cross-sec-
tion) with secondary (produced by another tracemaker us-
ing the same tunnel but going in another direction to form
an apparent branch) and pseudobranching (produced by
a cross-cutting burrow of the same or similar morpholo-
gy), with strongly transverse to weakly longitudinal stria-
tions on the floor and sides of the burrow wall with no fill
or chaotic fill of the burrow; the top of the burrow may be
pustoluse or knobby and show no scratches (Bromley and
Asgaard, 1979; Hasiotis, 2002; Bohacs et al., 2007; Smith
et al., 2009). Thus, we consider Steinichnus and Sponge-
liomorpha to be two distinctly different ichnogenera with
unique morphological features.

Palaeosols

Six types of palacosols were identified by pedogenic de-
velopment: entisols, inceptisols, vertisols, calcic inceptisols,
alfisols, and calcic alfisols (Table 4). Every member of the
Chinle Fm shows some degree of pedogenic modification.

Entisols: Profiles consist of compound AC and C hori-
zons. Roots and burrows penetrate parent material, which
display primary sedimentary structures. Entisols contain the
highest variety of ichnocoenoses, but most consist of hori-
zontal, shallow burrows (Tables 3, 4). Entisols are present in
the MM, PFM, ORM, and CRM.

Inceptisols: These have compound, composite, and cu-
mulative A-C and AC profiles. Inceptisols are observed in
the PFM, ORM, and CRM.

Calcic inceptisols: These consist of composite ABk,
A-ABk-AB, A-AB-ABk, and A-AB-Bk-C profiles. ABk
and Bk horizons are 55-95 cm thick and reach stages 1-2
of calcic palaeosol development. Carbonate accumulation
manifests as nodules 5-8 mm in diameter; horizons have
weight percent CaO from 51.78%-99.50%. Calcic horizons
commonly overprint each other to form composite palae-
osol profiles. Calcic inceptisols are present in the PFM,
ORM, and CRM.

Vertisols: These consist of compound to cumulative
A-Bss profiles. Strong redoximorphic mottling is present in
Bss horizons. Vertisols occur only in the ORM.

Alfisols: These consist of composite and cumulative A-Bt
and A-AB-Bt profiles. Bt horizons are characterized by illite
and montmorillonite. Alfisols occur only in the ORM.

Calcic alfisols: These consist of composite A-Btk and
A-Bt-Btk profiles. Bt horizons are characterized by illite and
montmorillonite and increased calcium accumulations. Btk
horizons are 0.12-3 m thick and contain illite and montmo-
rillonite. Calcium carbonate accumulation match stages 2—3
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PROMASTER

Fig.3.  Chinle Fm ichnofossils. Rock hammer 33 cm long A. Ancorichnus (An), Arenicolites (Ar), and Treptichnus (Tr). B. Branching
form of Camborygma (Ca). C. Camborygma (Ca) with a straight, cylindrical morphology. D. Cylindricum (Cy). E. Fictovich-
nus (Fv). F. Naktodemasis (Nk). G. Planolites (P1). H. Tetrapod footprint (Tf). I) Rhizocretion (Rc). J) rhizolith (Rh).
K. Rhizotubule (Rt). L. Scoyenia (Sc). M. Skolithos (Sk). N. Steinichnus (St). O. Therapsid burrows (Tb).
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Table 3

Chinle Formation ichnocoenoses. Ichnofossils listed in order of abundance.

Ichnocoenoses Ichnofossils

Facies

I-1. Camborygma

Camborygma, Naktodemasis, rhizohaloes, and rhizoliths; rare therapsid burrows,
Scoyenia, tetrapod tracks, Cylindricum, and Skolithos

F-2a, F-2b, F-2c, F-3, F-4a

Camborygma

1-2. Cylindricum Cylindricum and Scoyenia F-2¢c, F-3
1-3. Naktodemasis Naktodemasis, thizohaloes, rhizoliths; rare Camborygma and Planolites F-2a, F-2b
1-4. Naktodemasis— | Naktodemasis, Camborygma, rhizoliths, and Scoyenia; rare Ancorichnus, F-2a, F-2b, F-3

Arenicolites, Cylindricum, Planolites, and Treptichnus

1-5. Rhizolith

Rhizohaloes, rhizoliths, rhizocretions, rhizotubules; rare Planolites,

F-1, F-2a, F-2b, F-2¢, F-3,

Scoyenia, and Naktodemasis

Naktodemasis, and Skolithos F-4a
1-6. Scoyenia Scoyenia and rhizoliths; rare Cylindricum, Planolites, and Camborygma F-2a, F-3
1-7. Skolithos Skolithos; rare Planolites and Naktodemasis F-2¢
1-8. Steinichnus Steinichnus; rare rhizoliths F-1, F-4b
1-9. Therapsid Therapsid burrows, Camborygma, rhizohaloes, rhizoliths; rare Cylindricum, F-2a, F-2b

of calcic palaeosol development with nodules 0.5-2.0 cm
in diameter; horizons have weight percent CaO of 66.64%—
—87.43%, Calcic alfisols only occur in the ORM.

Facies associations

Lithofacies, ichnocoenoses, and palaeosols form six re-
occurring facies associations from proximal to distal po-
sition on the alluvial plain (Table 5; Fig. 4). FA-1 is most
abundant in the MM and also abundant in the CRM, where
TCS sandstone occurs as stacked, interconnected, laterally
extensive sand sheets. FA-2 is most abundant in the middle
ORM. Conglomerate beds have erosive bases and occur as
thin, laterally discontinuous, ribbon sand bodies encased in
siltstone; large oncoids are common as clasts. FA-3 is com-
mon in the ORM, consisting of stacks of interbedded massive
siltstone, ripple-cross-laminated sandstone, and laterally dis-
continuous sandstone and conglomerate beds. FA-4 forms the
majority of the PFM and ORM and is also observed in
the CRM, and consists of fine siliciclastic facies. FA-5 is
rarely observed in the PFM and ORM and consists of pla-
nar-laminated mudstone and siltstone with ichnofossils along
bedding planes. FA-6 is only observed in the CRM, consists
of planar-laminated siltstone and very fine sandstone, and is
the least abundant facies association. FA-6 is differentiated
from FA-5 by rare to absent ichnocoenoses and palacosols.

Ichnopedofacies

Shallowly burrowed entisol (IPF I): Compound AC
horizons with primary sedimentary structures within cre-
vasse-splay and levee (FA-3) and palustrine (FA-5) deposits
that contain at least one of these ichnocoenoses: Cylindricum,
Scoyenia, Skolithos, or Steinichnus (Tables 3-5; Fig. SA-C).
The Cylindricum ichnocoenosis is common in planar- and

ripple-cross-laminated siltstone to very fine sandstone
(F-2c and F-3) with abundant desiccation cracks. The Scoy-
enia ichnocoenosis is mainly associated with massive silt-
stone (F-2a) and ripple-cross-laminated siltstone to fine
sandstone (F-3). The Skolithos ichnocoenosis is associated
with lens-shaped sandstone bodies that display planar-lam-
inated bedding (F-2c), whose base is erosional with a thin
bed of conglomerate and surrounded by fine-grained strata.
The Steinichnus ichnocoenosis occurs in planar-laminated
mudstone (F-1) with abundant desiccation cracks. Ichno-
fossils primarily occur along bedding planes and penetrate
<12 cm into the sediment.

Rhizolith entisol (IPF II): Compound AC horizons
with the rhizolith ichnocoenosis (Tables 3-5; Fig. SD-F)
in ripple-cross-laminated sandstone (F-3), massive medium
sandstone (F-4a), and massive pebble conglomerate (F-5b)
within braided-river (FA-1) and crevasse-splay and levee
(FA-3) deposits. Ripple-cross-laminated sandstone com-
monly occurs above laterally extensive, stacked, TCS sand-
stone. Massive medium sandstone and pebble conglomerate
bodies form thin, laterally extensive sheets with erosive bas-
es. Red-brown rhizoliths and green-grey rhizohaloes occur
along bedding planes associated with lithofacies F-4a and
F-5b. Deeper penetrating green-grey rhizohaloes, 15-70-cm
deep and 18-85-cm long, occur with Planolites in lithofa-
cies F-3.

Camborygma entisol (IPF III): Compound AC hori-
zons and the Camborygma ichnocoenosis (Tables 3-5;
Fig. 6A—C) in ripple-cross-laminated siltstone and sand-
stone (F-3), massive medium—coarse sandstone (F-4a), and
massive pebble conglomerate (F-5b) within crevasse-splay
and levee deposits (FA-3). Massive sandstones and con-
glomerates have thin, laterally extensive sheet morpholo-
gies. Camborygma is <0.5-m deep and long in massive,
medium sandstone to pebble conglomerate. Camborygma



138

SEAN J. FISCHER & STEPHEN T. HASIOTIS

Table 4
Chinle Formation palaeosols.
Palacosol | Hori- Munsell colours and codes Common pedogenic features Facies Ichnoco-
order zons enoses
I-1,
Red (10R 5/4, 2.5YR 5/6), pale red (10R 6/3, 6/2), 1-2,
red brown (2.5YR 4/3), and green grey (Gley 1 Primary bedding F-2c, 1-3,
P-1. AC, 8/10GY); mottle colours of pale-red (10R 7/3), and sedimentary structures F-3, 1-4,
Entisol C brown (2.5Y 7/3,2.5YR 7/3), yellow (5Y 6/8, present; bedding disrupted F-4a, 1-5,
2.5Y 7/8), and green-grey (Gley 1 7/10Y) by roots and burrows F-4b 1-6,
reduction haloes 1-7,
1-8
A Red (10R 4/3, 2.5YR 4/6, 5/6) and red brown Weak horizon development: Fo1,
P-2. (2.5YR 3/4, 4/4); mottle colours of pale red . 1-3,
. AC, A horizon has angular blocky F-2a,
Inceptisol (10R 6/3) and green-grey (Gley 1 7/10Y) I-5
C . and granular peds F2b
reduction haloes
A—Red (2.5YR 4/5, 5/6), pale red (10R 6/2), red
brown (5R 5/3, 4/4, 2.5YR 4/4), brown (7.5YR 4/2);
mottle colours of red (10R 4/2), yellow (5YR 6/6, A horizon has angular blocky
10YR 7/3, 2.5YR 4/3), grey (10R 7/1) and and granular peds; AB horizon
A, green-grey (Gley 1 7/10Y, Gley 1 8/10GY) has angular blocky and granular
P-3. AB, | reduction haloes; AB—Red (10R 5/6) and red peds, redder than overlying F2a I-1,
Calcic ABK, | brown (10R 4/3); mottle colours of green-grey A horizon; ABk and Bk horizons F-2b’ I-3,
inceptisol | BKk, (Gley 1 7/10Y) reduction haloes; ABk, Bk—Red have angular blocky and granular 19
C (10R 5/6, 2.5YR 5/4) and pale red (10R 4/3, 5/2); peds, Stages 1-2 calcium
mottle colours of red (2.5R 3/6), pale red (10R 6/2), | carbonate accumulation;
red-brown (2.5R 5/4), yellow (5YR 6/6, 10YR 7/3, | green-grey reduction haloes
2.5YR 4/3) and green-grey (Gley 1 7/10Y)
reduction haloes
A horizon has angular blocky
pa A A—Pale red (5R 5/3); yellow (2.5Y 7/4) and prismatic peds; Bss horizon
Veﬁisol B;s rhizohaloes; Bss—Pale red (5R 5/3) has prismatic peds, large F-2a I-1
and green grey (Gley 1 7/10GY) slickensides; red, yellow,
and green-grey mottles
A—Red (2.5YR 5/6, 10R 6/4, 5/6); mottle colours A horizon has angular blocky and
of green-grey (Gley 1 7/10Y) reduction haloes; } .
granular peds; Bt horizon has 1-1,
A, AB—Red brown (2.5YR 4/4); mottle colours
P-5. . angular blocky, wedge, F-2a, 1-3,
Alfisol AB, | of green-grey (Gley 1 7/10GY) reduction haloes; and eranular peds. cla F-2b 14
Bt | Bt—Red (10R 4/6, 5/6) and red brown (2.5YR granuarpeds, cay ’
accumulation, and slickensides; 1-5
3/3); mottle colours of green-grey (Gley 1 7/10Y) .
. green-grey reduction haloes
reduction haloes
A—Red (10R 5/4), pale red (10R 6/3), and red
brown (7.5YR 5/2); mottle colours of red (10R 5/6), | A horizon has angular blocky
grey (10YR 7/2), and green-grey (Gley 1 7/10GY) peds; Bt horizon has angular
P6 A reduction haloes; Bt—Red (2.5YR 5/6); mottle blocky peds, clay accumulation; I-1,
" ’ colours of red-brown (2.5YR 6/4, 7/3) Btk horizon has angular blocky F-2a, 1-3,
Calcic Bt, . .
alfisol Bik and green-grey (Gley 1 5G8/1) reduction haloes; peds, clay accumulation, sparse F-2b I-5,
Btk—Red (10R 4/4, 5/3, 5/4), pale red (10R 6/3), to numerous Stages 2-3 calcium 19

and red grey (10R 6/1); mottle colours of red
(2.5YR 5/6, 10R 5/3), red-brown (2.5YR 7/3),
and green-grey (Gley 1 8/10GY) reduction haloes

carbonate nodules, rare slickensi-
des; green-grey reduction haloes
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Table 5
Chinle Formation facies associations.
Facies . . i
.. Lithofacies | Ichnocoenoses Palaeosols Other features Palaeoenvironment
association
Prevalence of coarse-grained lithofacies
and trough-cross-stratification;
F-2a, F-3, nd bodies form interconnected, stacked
FA-1 F-d4b, F-dc, | 1-5 P-1 pane andies orin miereonnected, SIS | Braided river
laterally extensive sand sheets;
F-5a, F-5b :
contain wood fragments and log casts;
basal erosive contact
Incline-bedded conglomerates;
FA-2 F-5¢ N/A N/A ribbon and thin sand sheet bOdl?S Meandering river
surrounded by mudstones and siltstones;
large oncoids as clasts
Interbedded ripple-cross-laminated
F-2a, F-2c, . .
1-1,1-2, I-4, sandstone and siltstone; thin, laterally Crevasse splay
FA-3 F-3, F-4a, P-1 HASHo! :
1-6,1-7 discontinuous sand sheet and ribbon and levee
F-5b . .
sand bodies; basal erosive contact
F-1, F-2a, P-1, P-2, Predominance of fine-grained lithofacies; Overbank and
FA-4 F-2b,F-2c, | I-1,1-3,1-5,1-9 | P-3, P-4, high variety of ichnofossils; ﬂg’j; ?:m an
F-3, F-4a P-5, P-6 well-developed palacosols p
Planar-laminated siltstone and very
F-1. F-2a fine-grained sandstone; disruption
FA-5 F-2; ’ I-1,1-2,1-5,1-8 | P-1,P-2 of bedding by tetrapod tracks and Palustrine
rhizoliths; shallow, horizontal burrows
along bedding planes; Neocalamites
Planar-laminated siltstone and very
FA-6 F-2a, F-2¢ N/A N/A fine-grained sandstone; rare ichnofossils; | Lacustrine
desiccation cracks

is up to 1.3-m deep and 1.45-m long in ripple-cross-lami-
nated sandstone. Skolithos is also associated with Cambo-
rygma in F-3.

Naktodemasis-Camborygma entisol (IPF IV): Stacked
red, compound AC horizons with the Naktodemasis-Cam-
borygma ichnocoenosis (Tables 3-5 Fig. 6D-QG) in rip-
ple-cross-laminated very fine sandstone (F-3) within
crevasse-splay and levee deposits (FA-3). Camborygma
is 20—45-cm deep and 25-55-cm long. Naktodemasis is
2-5 mm in diameter, overprints the Camborygma fill, and
penetrates the sediment within beds and between beds.
Scoyenia are 3-5.5 mm in diameter and are restricted to
bedding planes. Green-grey rhizohaloes extend along bed-
ding planes, are 5-20-cm deep, and 6-25-cm long. Only this
ichnopedofacies contains occurrences of Arenicolites, An-
corichnus, and Treptichnus.

Rhizolith inceptisol (IPF V): Compound A and AC pro-
files and the rhizolith ichnocoenosis (Tables 3—5; Fig. 7A—C)
in red and red-brown, massive siltstone to very fine sand-
stone (F-2b) within floodplain deposits (FA-4). Red-brown
rhizoliths are up to 16.5-cm deep and 17.5-cm long. Green-
grey rhizohaloes are up to 25-cm deep and 26-cm long.

Naktodemasis inceptisol and calcic inceptisol (IPF VI):
Composite and cumulative A, AB, and ABk horizons and

the Naktodemasis ichnocoenosis (Tables 3—5; Fig. 7D-G) in
red and red-brown, massive siltstone to very fine sandstone
(F-2b) within floodplain deposits (FA-4). Calcic horizons
reach mature stage 1 to incipient stage 2 development with
sparse calcium carbonate nodules. Green-grey rhizohaloes
are 20-95-cm deep, up to 110-cm long, and penetrate under-
lying horizons. Naktodemasis is 2—5 mm in diameter, is found
extensively in the entire profile, and overprints rhizohaloes.

Camborygma inceptisol and calcic inceptisol (IPF VII):
Composite Bk horizons and the Camborygma ichnocoeno-
sis (Tables 3-5; Fig. 8A—C) in red and pale red, massive
siltstone, and very fine sandstone (F-2b) in floodplain de-
posits (FA-4). Calcium carbonate nodules have mature stage
2 development. Camborygma is 110-120-cm deep and
150-cm long. Green-grey rhizoliths and rhizohaloes are
60-cm deep and 70-cm long.

Therapsid inceptisol and calcic inceptisol (IPF VIII):
Composite ABk horizons and the therapsid ichnocoenosis
(Tables 3-5; Fig. 8D—F) in red, red-brown, and grey, mas-
sive siltstone (F-2a) within floodplain deposits (FA-4). Silt-
stone is cemented by calcium carbonate and reaches stage 1
development. Therapsid burrows are 175-cm deep, 215-cm
long, and overprint multiple ABk horizons. White and yel-
low rhizoliths are up to 50-cm deep and 80-cm long.
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Fig. 4. Distribution of lithofacies, facies associations, ichnofossils, pedogenic features, palaeosols and ichnopedofacies in the Chinle
Fm with estimated mean annual precipitation (MAP). Overall, precipitation decreases through time with shorter term wet-dry cyclicity
observed in the PFM, lower ORM, and middle ORM.
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Fig. 5. Diagnostic features of ichnopedofacies I and II. A. Stacked AC and C horizons in shallowly burrowed entisol (IPF I). B. Stein-
ichnus (St) covering bottom of bedding planes in IPF I. C. Measured section in IPF I. D. AC horizons in outcrop with rhizohaloes (Rh) in
rhizolith Entisol (IPF II). Staff in 10-cm intervals. E. Rhizohaloes (Rh) in the basal AC horizon. Grain size card 15 cm tall. F. Measured
section in IPF II
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Diagnostic features of ichnopedofacies III and IV. A. 1.1-m-deep Camborygma (Ca) penetrating stacked AC horizons in Cam-
borygma entisol (IPF III). Staff in 10-cm intervals. B. Close-up of Camborygma (Ca) in IPF III. Note ripple-lamination preserved around
burrow in IPF III. C. Measured section in IPF III. D. Camborygma (Ca) penetrating stacked AC horizons of ripple cross-laminated very
fine-grained sandstone in Naktodemasis-Camborygma entisol (IPF 1V). E. Naktodemasis (Nk) and rhizoliths (Rh) along bedding planes in
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Camborygma vertisol (IPF IX): Compound to cumula-
tive A-Bss horizons with redoximorphic mottling, slicken-
sides, prismatic peds, and the Camborygma ichnocoenosis
(Tables 3—-5; Fig. 9A—F) in pale red and green-grey, massive
siltstone (F-2a) within floodplain deposits (FA-4). Cambo-
rygma is 75-cm deep, 95-cm long, and extend into the Bss
horizon. Rhizohaloes are bright yellow, 60-cm deep, and
70-cm long. Fictovichnus is observed 25 cm below the top
of the Bss horizon.

Naktodemasis alfisol (IPF X): Composite Bt horizons
and the Naktodemasis ichnocoenosis (Tables 3—5; Fig. 9F-I)
in red and red-brown mudstone to siltstone (F-1, F-2a) in
floodplain deposits (FA-4). Ichnofossils are only discernible
in the A horizon. Naktodemasis are 2—5 mm in diameter and
green-grey rhizohaloes are 10-cm deep and 12-cm long.

Naktodemasis calcic alfisol (IPF XI): Composite Btk
horizons and the Naktodemasis ichnocoenosis (Tables 3-5;
Fig. 10A, B) in red, red-brown, and red-grey, massive silt-
stone (F-2a) within floodplain deposits (FA-4). Calcium
carbonate horizons reach mature stage 2 development.
Naktodemasis is 2-5 mm in diameter and pentrates down
into the Bt horizon. Green-grey rhizohaloes are 19-cm deep
and 22-cm long. Planolites is <2 mm in diameter and only
observed within the A horizon.

Rhizolith calcic alfisol (IPF XII): Composite Btk
horizons and the rhizolith ichnocoenosis (Tables 3-5;
Fig. 10C-F) in red and red-brown, massive siltstone (F-2a)
within floodplain deposits (FA-4). Calcium carbonate accu-
mulation reaches stage 3 development with abundant nod-
ules up to 2 cm in diameter. Rhizotubules lined with calci-
um carbonate nodules are 120-cm deep and 135-cm long.
Green-grey siltstone fills the inside of rhizotubules.

INTERPRETATION
OF ICHNOPEDOFACIES

Shallowly burrowed entisol (IPF I): Cylindricum in con-
junction with F-2¢ and F-3 suggest subaerially exposed lev-
ee, crevasse-splay, and point bar environments with shallow
water tables (Figs 5A—C, 11) (Hasiotis and Dubiel, 1993a;
Hasiotis and Demko, 1996; Hasiotis, 2004, 2008). This is
further supported by the association with desiccation cracks,
indicating wetting and drying cycles. Scoyenia indicates
shallow water tables with sediment saturation near 100%
and where the capillary fringe is close to the surface in ei-
ther marginal-lacustrine or levee environments (Frey ef al.,
1984; Hasiotis and Dubiel, 1993a; Hasiotis, 2002, 2004,
2008). The occurrence of Scoyenia in F-3 suggests deposi-
tion on levees or fluvial floodplain. The occurrence of both
Cylindricum and Scoyenia within the same beds (Table 3)
indicate fluctuating water-table conditions in these proximal
fluvial environments. Scoyenia form after initial deposition
when water tables and sediment moisture levels are high,
then Cylindricum is constructed in the deposits as the wa-
ter table lowers (Hasiotis and Bown, 1992; Hasiotis, 2004,
2008). Skolithos are not indicative of any specific environ-
ment (Hasiotis, 2002), but the sandstone lenses containing
these ichnofossils match the morphology of crevasse-splay
deposits (Miall, 1996). Steinichnus are associated with

palustrine and channel-levee environments with high water
tables at or near the sediment-water-air interface (Bromley
and Asgaard, 1979; Hasiotis and Bown, 1992; Hasiotis,
2002). Occurrence of Steinichnus in green-grey mudstone
also supports poorly drained, reducing conditions (Therrien
and Fastovsky, 2000; Kraus and Hasiotis, 2006; Smith ez al.,
2008b). Desiccation cracks and shallow rhizoliths within
these mudstones indicate periods of slightly lower water
tables and subaerial exposure (Hasiotis ef al., 2007a). The
close proximity of environments to fluvial systems led to
more frequent sedimentation and areas with standing water
(swamps, lakes), resulting in shorter duration of pedogen-
esis between depositional events (Bown and Kraus, 1987,
1993a, b; Kraus, 1999; Hasiotis, 2007; Hasiotis et al., 2012).

Rhizolith entisol (IPF II): Rhizoliths and rhizohaloes
in F-4a and F-5b suggest crevasse-splay deposits with high
water tables near the sediment surface, restricting vertical
penetration by roots (Figs SD-F, 11) (Hasiotis, 2007; Ha-
siotis and Platt, 2012). Red-brown rhizoliths within drab
green-grey matrix indicate poorly drained sediment (Kraus
and Hasiotis, 2006). Green-grey rhizohaloes within red sedi-
ment, however, formed by surface water gleying mobilizing
and transporting iron oxides away from the original root in
well-drained soils (Kraus and Hasiotis, 2006; Smith et al.,
2008b). Colour differences in palacosol matrix, rhizoliths,
and rhizohaloes suggest alternating well- and poorly drained
conditions after overbank deposition.

Deep penetration of roots in fluvial bars suggests that they
became subaerially exposed via falling water level to pro-
duce well-drained conditions (Hasiotis et al., 2007a; Counts
and Hasiotis, 2014). Fluvial bars were also abandoned
during channel migration and became part of the proxi-
mal floodplain colonized by plants (Kraus, 1987; Hasiotis,
2004, 2008). Drab colours of rhizohaloes formed through
surface water gleying during short periods of standing water
during and after flooding events (Retallack, 2001; Hasiotis,
2004, 2008; Kraus and Hasiotis, 2006). Rhizohalo penetra-
tion depth decreases upsection from 70 to 15 cm below the
sediment surface, indicating a rise in water table through
time (Hasiotis, 2004, 2008; Hasiotis et al., 2007a). Weak
palaeosol development occurred within close proximity to
the fluvial system, indicating frequent flooding and burial
by sediment (Bown and Kraus, 1987, 1993a, b; Hasiotis,
2007).

Camborygma entisol (IPF III): Camborygma extend
into the phreatic zone, and mark the level of the palacowater
table (Figs 6A—C, 11) (Hasiotis and Mitchell, 1993; Hasiotis
et al., 1993; Hasiotis, 2002). Camborygma within F-4a and
F-5b are assigned to Camborygma litonomos due to their
simple shaft morphology and length <0.5 m (Hasiotis and
Mitchell, 1993; Hasiotis and Honey, 2000). Camborygma
litonomos represent saturated sediments with a high-water
table in proximal levee, crevasse-splay, and point bar en-
vironments (Hasiotis and Mitchell, 1993; Hasiotis et al.,
1993; Hasiotis, 2004, 2008). This interpretation is supported
by sandstone and conglomerate bodies with morphologies
matching proximal fluvial crevasse-splay deposits (Miall,
1996).

Camborygma within F-3 are assigned to Camborygma
eumekenomos due to shaft depths >1 m and simple mor-
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Fig. 7. Diagnostic features of ichnopedofacies V and VI. A. Green-grey rhizohalo (Rh) in A horizon in rhizolith inceptisol (IPF V).
Rock hammer 33 cm long. B. Palacosol profile in outcrop of IPF V. C. Measured section in IPF V. D, E. Profile of palacosol in outcrop
of Naktodemasis calcic inceptisol (IPF VI). Palacosols form composite profiles of cumulative horizons in IPF VI. F. Naktodemasis (Nk)
development around a rhizohalo (Rh) in IPF VI. G. Measured section in IPF VI.
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Fig. 8.  Diagnostic features of ichnopedofacies VII and VIII. A. Palaeosol profile in outcrop of Camborygma calcic Inceptisol (IPF VII).
Staffin 10-cm intervals. B. Camborygma (Ca) in branching and nonbranching forms. C. Measured section in IPF VII. D. Palacosol profile
in outcrop of therapsid calcic inceptisol (IPF VIII). Staff in 10-cm intervals. E. Therapsid burrow (Tb) and rhizoliths (Rh) in IPF VIIL.

F. Measured section in IPF VIII.
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Fig. 9. Diagnostic features of ichnopedofacies IX and X. A. Palaeosol profile in outcrop of Camborygma vertisol (IPF IX). B. Yellow
rhizohaloes (Rh) penetrating an A horizon with prismatic peds in IPF IX. C. Fictovichnus (Fv) in Bss horizon in IPF IX. D. Camborygma
from A horizon in IPF IX. E. Measured section in IPF IX. F. Naktodemasis (Nk) and rhizohaloes in the A horizon in Naktodemasis alfisol
(IPF X). Grain size card 15 cm tall. G, H. Palaeosol profile in outcrop in IPF X. I. Measured section in IPF X.
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Fig. 10. Diagnostic features of ichnopedofacies XI and XII. A. Palaeosol profile in outcrop of Naktodemasis calcic alfisol (IPF XI). Staffin
10-cm intervals. B. Measured section in IPF XI. C. Btk horizon with numerous calcium carbonate nodules in rhizolith calcic alfisol (IPF XII).
Top of horizon truncated by overlying conglomerate. Staff in 10-cm intervals. D. ABtk horizon with rhizotubules (Rt) lined by calcium
carbonate nodules in IPF XII. E. Lower half of palacosol profile in outcrop of IPF XII. Note sharp contrast between CaCO,-bearing Btk
horizon and underlying A horizon. F. Measured section in IPF XII.
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Ichnopedofacies depositional model for Chinle Fm. Lateral distribution of ichnopedofacies on alluvial plain. Cross-section from

A to A’ on landscape block diagram shows variations in physiochemical conditions along the alluvial plain. Shallower burrows located
closer to fluvial channel, whereas deeper burrows and CaCO, nodules occur on distal floodplain.

phology (Hasiotis and Mitchell, 1993; Hasiotis et al., 1993).
Camborygma eumekenomos indicate deeper, highly fluc-
tuating water tables in proximal floodplain environments
(Hasiotis and Mitchell, 1993; Hasiotis and Honey, 2000;
Hasiotis, 2004, 2008). Stacked compound AC horizons
first formed on levees during an interval of nonsteady,
high sedimentation (Fig. 6A—C; Kraus, 1999; Hasiotis and
Platt, 2012). Skolithos formed during short intervals of pe-
dogenesis between depositional episodes, suggesting other
bioturbation may have occurred within AC horizons but is
not clearly visible. Close proximity to the fluvial system led
to frequent burial by sediment, restricting pedogenic de-
velopment and preserving primary sedimentary structures
(Bown and Kraus, 1987; Hasiotis et al.., 2012). Camboryg-
ma originated from a stable soil surface during a hiatus in
sedimentation, allowing burrows to overprint the underly-
ing AC horizons (Hasiotis and Honey, 2000). Occurrence
of C. eumekenomos also marks the migration of the fluvial
system away from the area, which led to less frequent sed-
imentation events and greater pedogenesis (e.g., Bown and
Kraus, 1993a, b; Hasiotis, 2004, 2008).
Naktodemasis-Camborygma entisol (IPF IV): This ich-
nopedofacies contains ichnofossils representing both high
and low water tables. The occurrence of Scoyenia, Areni-
colites, Ancorichnus, and Treptichnus along bedding planes

suggests a shallow water table and intervals of standing
freshwater (Figs 6D—-G, 11) (Hasiotis, 2002, 2004, 2008).
Camborygma litonomos also indicate a shallow water table
between 20-45 cm beneath the sediment surface. Naktode-
masis, however, reflect terraphilic to hygrophilic behaviour
and indicates moderate- to well-drained soil conditions
(e.g., Hasiotis, 2004, 2008; Smith et al., 2008a, b; Counts
and Hasiotis, 2009, 2014). Green-grey rhizohaloes penetrat-
ing up to 20 cm deep further support a thin, well-drained va-
dose zone (Kraus and Hasiotis, 2006; Hasiotis ef al., 2007a;
Counts and Hasiotis, 2014).

Overprinting of ichnofossils exhibiting terraphilic, hy-
grophilic, and hydrophilic behaviours are common features
in fluvial deposits and indicate fluctuating water tables
(Hasiotis and Bown, 1992; Hasiotis, 2002). After initial
sediment deposition, when standing water was present,
the levee was colonized with Arenicolites, Ancorichnus,
and Treptichnus. As water level fell beneath the sediment
surface, Scoyenia and shallow roots penetrated the levee.
Continued pedogenesis and improved drainage allowed the
tracemakers of C. litonomos and Naktodemasis to biotur-
bate the sediment and overprint previous burrows. Towards
the end of pedogenesis, deeper penetrating roots, in turn fed
on by the organisms producing Naktodemasis, overprinted
C. litonomos. Pedogenesis was brief due to close proximity
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to the fluvial system that frequently deposited new sediment
onto the levee, which subsequently underwent pedogenesis
after the water level lowered. This pattern was repeated over
time (Bown and Kraus, 1987, 1993a, b; Hasiotis and Bown,
1992; Hasiotis, 2007).

Rhizolith inceptisol (IPF V): Vertically penetrating,
green-grey rhizohaloes and red-brown rhizoliths and strong
red colour of palaeosols indicate well-drained conditions
(Figs 7A—C, 11) (Kraus and Hasiotis, 2006). Root ichnofos-
sils, however, only show a maximum penetration depth of
25 cm, indicating the vadose zone was thin and the water
table was shallow (Hasiotis et al., 2007a). The compound
profiles indicate high, nonsteady sedimentation with pe-
dogenesis occurring between depositional events (Kraus,
1999; Hasiotis and Platt, 2012). The AC horizon with rem-
nant bedding indicates shorter duration pedogenesis than
the overlying homogenized A horizon (Bown and Kraus,
1987; Hasiotis et al., 2012). Incipient horizon formation,
nonsteady sedimentation, short duration of pedogenesis,
and shallow water tables indicate a proximal position on
the floodplain (Bown and Kraus, 1987, 1993a, b; Birkeland,
1999; Hasiotis and Platt, 2012).

Naktodemasis inceptisol and calcic inceptisol (IPFVI):
Extensive Naktodemasis development, deeply penetrating
rhizohaloes, and strong red palaeosol colouration sug-
gest well-drained environments with a deep water table
(Figs 7D-G, 11) (Kraus and Aslan, 1993; Kraus and Ha-
siotis, 2006; Hasiotis et al., 2007a; Smith et al., 2008a;
Counts and Hasiotis, 2009, 2014). Calcium carbonate
nodules indicate that evapotranspiration > precipita-
tion (Gile et al., 1966; Machette, 1985), and also sup-
port the interpretation of well-drained conditions. The
length of pedogenesis allowed roots to crosscut un-
derlying horizons and Naktodemasis to form around
these roots as feeding behaviour (Fig. 7F). Cumulative
and composite profiles formed when pedogenesis out-
paced steady state and nonsteady state sediment deposi-
tion, respectively, leading to more developed palaeosols
(Kraus, 1999; Hasiotis and Platt, 2012), and suggesting
a more distal position on the floodplain (Bown and Kraus,
1987, 1993a, b; Hasiotis, 2007; Hasiotis et al., 2012).

Camborygma inceptisol and calcic inceptisol (IPF VII):
Camborygma eumekenomos terminates at a pale red Bk
horizon, indicating a deep, highly fluctuating water table at
times >1 m below the sediment surface. Pale red coloura-
tion is associated with less well-drained palaeosol horizons
(Figs 8A—C, 11) (Kraus and Aslan, 1993; Kraus and Hasio-
tis, 2006; Smith ef al., 2008b, c), supporting more frequent
saturated conditions at this level. Stronger red colouration
in overlying horizons, roots, faecal pellets, and calcium
carbonate nodules indicate well-drained, oxidizing condi-
tions higher in the palaeosol profile (Kraus and Aslan, 1993;
Kraus and Hasiotis, 2006; Hasiotis and Platt, 2012). Calci-
um carbonate nodules overprinted C. eumekenomos and the
pale red Bk horizon during extended intervals of lower pre-
cipitation and palacowater table, suggesting evapotranspira-
tion outpaced precipitation and moisture was highly season-
al (Machette, 1985; Dubiel and Hasiotis, 2011). Composite
horizons indicate pedogenesis outpaced nonsteady state
sediment deposition on the distal floodplain, leading to bet-
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ter developed palaecosols (Kraus, 1999; Hasiotis and Platt,
2012).

Therapsid inceptisol and calcic inceptisol (IPF VIII):
Therapsid burrows exhibit terraphilic behaviour and were
constructed above the water table (Figs 8D-F, 11) (Hasiotis,
2004, 2008; Hasiotis et al., 2004, 2007b; Hembree and Ha-
siotis, 2008). Two episodes of colonization by therapsids are
observed. The lower therapsid burrows occur in horizons
with duller colour values and iron oxide nodules, which
indicate higher moisture, higher sediment saturation, and
more poorly drained conditions (Kraus and Aslan, 1993;
Mack et al., 1993; Stiles et al., 2001). Therapsid burrows
were emplaced during an interval of sediment hiatus and
stable landscape with well-drained conditions of relative-
ly short duration. The upper two ABk horizons denote two
intervals of sedimentation and subsequent bioturbation by
roots and invertebrates. Deep rhizoliths and stronger red
colouration indicate well-drained palaeosols with longer
pedogenesis, allowing therapsid burrows to overprint hori-
zons and carbonate to the buildup in the profile. Compos-
ite calcic horizons indicate pedogenesis outpaced sediment
deposition in a distal position on the floodplain (Bown and
Kraus, 1993a, b; Kraus, 1999; Hasiotis et al., 2007a; Hasi-
otis and Platt, 2012).

Camborygma vertisol (IPF IX): Redoximorphic colour-
ation, prismatic peds, and slickensides indicate fluctuating
water tables and seasonal moisture (Figs 9A—E, 11) (Driese
and Foreman, 1992; Driese and Mora, 1993; Kraus and Ha-
siotis, 2006; Dubiel and Hasiotis, 2011). Fictovichnus are
cocoons that represent terraphilic behaviour in well-drained
sediments constructed during the dry season when soil mois-
ture and the water table were lower (Hasiotis, 2002, 2003,
2004, 2008). Subsequent water table rise during the wet
season aided in preservation of the cocoons (Alonso-Zara
et al.,2014). Following an interval of deposition, plants col-
onized the soil profile and yellow rhizohaloes formed in sat-
urated, poorly drained sediments with reducing conditions
(Kraus and Hasiotis, 2006). Another interval of deposition
followed, and a subsequent hiatus in sedimentation allowed
for C. eumekenomos to overprint underlying horizons to
a water table depth ~75 cm below the sediment surface.
The redoximorphic colouration, compound and cumulative
profiles, and C. eumekenomos indicate a proximal position
on the floodplain (Kraus, 1987; Hasiotis and Mitchell, 1993;
Kraus, 1999; Hasiotis and Platt, 2012).

Naktodemasis alfisol (IPF X): Naktodemasis as feed-
ing behaviour around roots and red matrix indicates well-
drained conditions with a low water table (Figs 9F-I, 11)
(Kraus and Aslan, 1993; Kraus and Hasiotis, 2006; Smith
and Hasiotis, 2008; Smith et al., 2008a; Counts and Ha-
siotis, 2009, 2014). Composite Bt horizons formed as
pedogenesis outpaced sedimentation, allowing clay to
accumulate in the subsurface, indicating a more stable
landscape in a distal position on the floodplain (Bown and
Kraus, 1987; Kraus, 1999; Hasiotis et al., 2007a; Hasiotis
and Platt, 2012).

Naktodemasis calcic alfisol (IPF XI): Naktodemasis
developement down 75 cm, calcium carbonate nodules,
and red colouration indicate well-drained conditions
with a deep water table produced when evapotranspira-
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tion outpaced precipitation and moisture was seasonal
(Figs 10A, B, 11) (Machette, 1985; Counts and Hasiotis,
2014). Composite Btk profiles indicate that pedogenesis
outpaced sedimentation, allowing clay accumulation and
carbonate buildup in a landscape on the distal floodplain
(Bown and Kraus, 1993a, b; Kraus, 1999; Hasiotis, 2007,
Hasiotis and Platt, 2012).

Rhizolith calcic alfisol (IPF XII): Red matrix, deeply
penetrating rhizotubules, and carbonate nodules indicate
well-drained conditions with a deep water table when
evapotranspiration outpaced precipitation and moisture
was seasonal. Rhizotubules formed as carbonate precipi-
tated on root surfaces during the uptake of nutrients and
water (Figs 10C-F, 11) (Klappa, 1980; Kraus and Hasiotis,
2006), which produced a cylinder that conducted water in
the soil profile (Klappa, 1980), producing a gleyed matrix
(reducing conditions) within the rhizotubule. The Btk ho-
rizon above the rooted zone indicates another calcic alfisol
formed on top of this profile, but was cut out by the over-
lying conglomerate. Abundant accumulation of carbonate
and well-formed, composite Btk horizons indicate greater
duration of palaeosol development with pedogenesis out-
pacing sedimentation on the most distal position of the
floodplain.

DISTRIBUTION OF PALAEOSOLS
AND ICHNOPEDOFACIES

Lateral distribution

Ichnopedofacies show an inverse relationship between
palaeosol development and proximity to the fluvial sys-
tem in a general model (Fig. 11). Entisol ichnopedofacies
(IPF-I-1V) are restricted to proximal fluvial bar, cre-
vasse-splay, and levee environments. Inceptisol, calcic in-
ceptisol, vertisol, alfisol, and calcic alfisol ichnopedofacies
(IP-V-XII) are only present in floodplain environments.
This distribution shows a similar pattern to palacosols of the
Palacogene Willwood Fm in Wyoming, where Bown and
Kraus (1987, 1993a, b) and Kraus (1987) attributed their
observations of palacosol development to decreasing short-
term sediment accumulation rates with increasing distance
from the channel. Thinning of fluvial deposits away from
the channel means distal environments experience less sed-
imentation and greater duration of pedogenesis (Bown and
Kraus, 1987, 1993a, b; Hasiotis, 2002, 2007). Rhizolith in-
ceptisols show greater development than other ichnopedo-
facies in channel bank, crevasse-splay, and levee environ-
ments, but pedogenesis did not act long enough for the
development of calcic or argillic horizons, indicating forma-
tion on the proximal floodplain. The strong hydromorphic
features of Camborygma vertisols indicate areas of low to-
pography on the floodplain, leading to higher gleyed matrix-
es and less well-drained conditions (Kraus and Middleton,
1987a; Kraus and Aslan, 1993; Prochnow et al., 2005). Lack
of carbonate accumulation further supports higher moisture
content in this ichnopedofacies. Naktodemasis inceptisols
and calcic inceptisols, Camborygma inceptisols and calcic
inceptisols, and therapsid inceptisols and calcic inceptisols
display more developed horizonation, supporting formation
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on the distal floodplain. Naktodemasis alfisols, Naktode-
masis calcic alfisols, and rhizolith calcic alfisols show both
thick, well-developed calcic and argillic horizons, also indi-
cating a distal floodplain position.

Vertical distribution

Overall, ichnofossil diversity increases from the MM into
the lower and middle ORM, then decreases throughout the
rest of the ORM and CRM. Calcium carbonate nodules are
most abundant in the PFM, lower ORM, and base of the mid-
dle ORM and decrease in occurrence up section (Figs 4, 12).
Ichnopedofacies tend to redden up section and become
dominated by ichnofossils displaying terraphilic behav-
iour. Camborygma decrease in occurrence through ORM
deposition and are absent from the CRM. Therapsid bur-
rows, conspicuous in the PFM, decrease up section through
the ORM and are absent from the CRM. Root ichnofossils
and Naktodemasis occur throughout the PFM and ORM,
though Naktodemasis are only present near the base of the
CRM, whereas root ichnofossils persist higher into this unit.
Rhizoliths and Cylindricum are the stratigraphically highest
occurring ichnofossils in the Chinle Fm.

Proximal fluvial (i.e., channel, levee, crevasse splay) de-
posits show a stratigraphic shift in ichnopedofacies through-
out the Chinle Fm (Fig. 4). Rhizolith entisols in the MM
transition to Camborygma entisols in the PFM. Camboryg-
ma entisols transition to both shallowly burrowed entisols,
dominated by the Steinichnus and Scoyenia ichnocoenoses,
and Camborygma-Naktodemasis entisols in the ORM. Ich-
nopedofacies transition to shallowly burrowed entisols,
dominated by the Scoyenia and Cylindricum ichnocoenoses,
and rhizolith entisols in the CRM.

Proximal and distal floodplain deposits also display strati-
graphic changes in ichnopedofacies (Figs 4, 12). Floodplain
ichnopedofacies are rare in the MM, but the PFM contains
Naktodemasis inceptisols and calcic inceptisols, and therap-
sid inceptisols and calcic inceptisols. These ichnopedofaci-
es transition to Camborygma vertisols, rhizolith inceptisols,
Naktodemasis calcic alfisols, and rhizolith calcic alfisols in
the lower ORM. In the middle to upper ORM, ichnopedo-
facies consist of Camborygma inceptisols and calcic incep-
tisols, Naktodemasis alfisols, and Naktodemasis inceptisols
and calcic inceptisols. Ichnopedofacies transition to Nakto-
demasis inceptisols and calcic inceptisols and rhizolith in-
ceptisols in the CRM.

INCISED VALLEYS AND CHANNEL FILLS

Pedogenic development was further influenced by topo-
graphic position and location within the study area. Stacked
palaeovalleys are present in all members, and palacosols
fill these palaeovalleys (Fig. 12). Palacovalley depth varies
from 5-17 m, indicating significant variation in palaeoto-
pography during Chinle Fm deposition. In the PFM, lower
ORM, and upper ORM, less developed palaecosols domi-
nate palaeovalleys and better developed palaeosols occur
on interfluve positions. A position on the interfluve itself,
however, is not indicative of a particular stage of palaeosol
development. Inceptisols and vertisols were more common
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at interfluve locations in the south of the study area. Calcic
inceptisols, alfisols, and calcic alfisols were more common
on interfluves located towards the north of the study area.
This indicates a local trend from PFM into ORM deposi-
tion, where lower valley-fill rates with longer duration of
pedogenesis were present in the north, with rate of valley fill
increasing to the south. No trend is associated with palaeo-
sol development and topographic position for palacovalleys
in the MM, middle ORM, and CRM.

PHYSIOCHEMICAL CONTROLS
ON SEDIMENTATION AND
ICHNOPEDOLOGIC DEVELOPMENT
IN THE NORTH-EASTERN CHINLE BASIN

Physiochemical conditions controlling sedimentation and
ichnopedofacies development in the north-east Chinle Basin
can be separated into autocyclic controls, allocyclic controls,
and hydrology. Autocyclic processes are determined by en-
ergy distribution within the depositional basin and include
fluvial channel migration and overbank flooding events
(Beerbower, 1964; Allen, 1970; Bridge and Leeder, 1979;
Bridge, 1984; Smith et al., 1989; Slingerland and Smith,
2004; Cleveland et al., 2007; Trendell et al., 2012). Allocy-
clic controls are influences from outside of the deposition-
al basin and include tectonism (including halokinesis) and
climate (Beerbower, 1964; Cater, 1970; Bridge and Leeder,
1979; Blakey and Gubitosa, 1983; Alexander and Leeder,
1987; Hazel, 1994; Cecil, 2003; Cleveland et al., 2007; Dubi-
el and Hasiotis, 2011). Hydrology is influenced by autocyclic
and allocyclic processes and controls the distribution, tiering,
and depth of ichnofossils (Hasiotis and Bown, 1992; Hasio-
tis and Mitchell, 1993; Hasiotis and Dubiel, 1994; Hasiotis,
2002, 2004, 2007, 2008; Hasiotis et al., 2007a, 2012).

Autocyclic processes

Within the Chinle Fm, meandering river, braided river,
crevasse-splay, and levee deposits commonly overlie flood-
plain deposits (Fig. 4). This depositional pattern records
overbank flooding and channel migration on the alluvial
plain, with pedogenesis occurring between deposition-
al events (Bridge and Leeder, 1979; Bridge, 1984; Kraus,
1987, 1999, 2002; Smith et al., 1989; Slingerland and
Smith, 2004).

Overbank flooding: This depositional process is pre-
served in the PFM, middle ORM, and CRM where the thin,
discontinuous nature of sandstone facies indicates depo-
sition on the distal ends of prograding crevasse-splay and
levee complexes (Bridge, 1984; Bown and Kraus, 1987).
Frequency of overbank flooding influenced up section
changes in palacosol development. Alfisols occur be-
tween depositional episodes in the PFM and middle ORM
(Fig. 12). Alfisols decrease up section and no alfisols are
found within the CRM (Figs 4, 12). Alfisols in the PFM
and middle ORM indicates these units had longer dura-
tions of pedogenesis between depositional events. The
frequency and magnitude of sedimentation by overbank
flooding increased in the CRM (Bown and Kraus, 1993a,
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b; Hasiotis, 2007; Hasiotis et al., 2007a), which reduced
the duration of pedogenesis and resulted in a transition
from the formation of calcic inceptisols to the formation
of inceptisols and entisols.

Channel migration: This depositional process is pre-
served in the MM, PFM, ORM, and CRM where channel
migration of braided and meandering rivers influenced sed-
iment deposition and duration of pedogenesis (Figs 4, 12).
Channel migration towards distal positions on the floodplain
led to more frequent sedimentation events and laid levee and
crevasse-splay deposits over floodplain deposits, interrupting
pedogenesis. Subsequent fluvial migration away from the area
resulted in less frequent sedimentation and greater duration of
pedogenesis, allowing crevasse-splay and levee deposits to
be topped by more developed ichnopedofacies (Kraus, 1987;
Bown and Kraus, 1993a, b; Hasiotis ef al., 2007a).

Frequency of channel migration changed through Chine
Fm deposition, affecting the development of palacosols and
ichnopedofacies. In the MM, frequent migration of braided
rivers led to the abandonment of fluvial bars and the de-
velopment of rhizolith entisols on bar tops. Channel mi-
gration frequency then decreased during deposition of the
PFM and lower ORM. Decreased reworking by meandering
fluvial systems with low, nonsteady sedimentation allowed
for greater duration of pedogenesis. Numerous channel mi-
gration deposits in the middle ORM indicate an increase in
migration frequency up section. Frequency of channel mi-
gration then decreased during upper ORM deposition, with
only one channel migration event observed near the top of
the unit. Less frequent channel migration, and a shift to rela-
tively steady sediment deposition allowed for the accumula-
tion of composite and cumulative palaeosol profiles. Chan-
nel migration frequency then increased once again during
CRM deposition. Increased channel migration and increas-
ing nonsteady sediment deposition led to shorter duration of
pedogenesis and a transition from composite inceptisols to
compound inceptisols and entisols.

Comparison to FACs: In the north-east Chinle Basin,
overbank flooding and channel migration deposits fine up-
ward similarly to the meter-scale fluvial aggradational cycles
(FACs) observed in the Chinle Fm in Arizona, New Mexi-
co, and eastern Utah (Prochnow et al., 2006b; Cleveland
et al., 2007; Trendell ef al., 2012). In the study area, how-
ever, such nested fluvial cycles were not identified; though
channel migration and overbank flooding did affect finer
scale sedimentation patterns. The absence of nested fluvial
cyclicity indicates that autocyclic processes were neither as
common nor the dominant control on sedimentation.

Allocyclic processes

Regional tectonism: Changes in rates of basin subsidence
and accommodation are indicated by shifting styles of fluvi-
al deposition and ichnopedofacies development (Figs 4, 12).
Low subsidence rates led to decreased accommodation,
causing increased reworking of sediment by fluvial systems
(e.g., Kraus and Middleton, 1987b). Frequent reworking of
sediment resulted in poor preservation of ichnopedofacies
in the MM, and those that were preserved were less devel-
oped due to short duration of pedogenesis. Fluvial styles
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evolved into meandering streams in the PFM and ORM. The
thick floodplain deposits and ribbon sand bodies of these
units support rapid subsidence rates that allowed for greater
accommodation in the basin (Blakey and Gubitosa, 1984;
Kraus, 1987; Kraus and Middleton, 1987b; Hazel, 1994,
Cleveland et al., 2007). Greater accommodation meant less
frequent sediment reworking by rivers and longer dura-
tion of pedogenesis (Bown and Kraus, 1987; Blakey and
Gubitosa, 1984; Kraus, 2002). This aided in the formation
and preservation of more developed ichnopedofacies in
the PFM and lower ORM. During intervals of higher sed-
imentation, floodplain and fluvial systems aggraded (e.g.,
Smith et al., 1989; Slingerland and Smith, 2004). Intervals
of higher nonsteady and steady sedimentation explain the
formation of compound and composite ichnopedofacies in
the middle ORM and composite and cumulative ichnopedo-
facies in the upper ORM. Sand sheets in the CRM indicate
a shift to lower basin subsidence rates at the end of Chinle Fm
deposition (Blakey and Gubitosa, 1983, 1984; Kraus, 1987;
Hazel, 1994; Cleveland et al., 2007). Ribbon sand bodies in
the CRM, however, indicate basin subsidence rate was not
as low as during MM deposition. Slightly higher subsidence
rates allowed for the accommodation needed for the preserva-
tion of playa lake deposits in the CRM. As basin subsidence
decreased, accommodation also decreased and sediment re-
working by fluvial systems increased. Shorter duration pe-
dogenesis led to less developed ichnopedofacies up section,
though frequent cannibalization of sediment by rivers meant
some ichnopedofacies were not preserved in CRM deposits.

Incised valleys formed through base-level changes, and
ichnopedofacies filling these valleys were influenced by
temporal and spatial changes in sedimentation rate. Drops
in base level cut valleys into Chinle Fm units and mark the
breaks between members. Valleys were subsequently filled
during rises in base level, which created accommodation
for sedimentation. During MM deposition, high, non-
steady sedimentation rates and increased fluvial migration
during reduced accommodation influenced the formation
of entisols. During PFM, lower ORM, and upper ORM
deposition, relative rates of valley fill were higher in the
south of the study area than in the north, creating a trend of
increasing duration of pedogenesis on interfluves located
to the north. Overall sedimentation rates remained fairly
low during PRM and lower ORM deposition. Low, non-
steady sedimentation, along with rare channel migration,
further enhanced the formation of well-developed ich-
nopedofacies including compound and composite incep-
tisols and alfisols. Sedimentation rates then increased and
remained predominantly nonsteady during middle ORM
deposition. Sedimentation remained high, but decreased
slightly and become relatively steady in the upper ORM.
Sedimentation rates increased in the CRM and also shift-
ed to nonsteady deposition. This change in sedimentation,
in conjunction with decreased basin accommodation and
more frequent channel migration, resulted in a shift from
inceptisols at the base of the member to poorly developed,
compound entisols and inceptisols.

Halokinesis: This process influenced facies distribution
and preservation in the study area. The north-east Chinle
Basin is located at the western edge of the Salt Anticline Re-
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gion, and previous investigations have noted that halokinesis
influenced sedimentary architecture and palaeosol develop-
ment (Blakey and Gubitosa, 1983; Hazel, 1994; Prochnow
et al., 2005, 2006b). Across the Four Corners region, in-
cluding south-eastern Utah, extensive lacustrine limestone
beds have been identified within the ORM (Stewart et al.,
1972; Blakey and Gubitosa, 1983; Dubiel, 1987). The ORM
in the study area, however, does not contain those extensive
lacustrine limestone beds. A laterally accreted conglomerate
bed containing oncoid clasts occurs instead in that strati-
graphically equivalent position (Figs 4, 12). Increased basin
subsidence due to salt withdrawal during lower ORM depo-
sition created the accommodation needed for lakes to form.
Oncolites then developed within this local lacustrine system
(e.g.,Abell et al., 1982; Rosell and Obrador, 1982; Parcerisa
et al., 2006; Arenas et al., 2007). Following lake develop-
ment, a drop in local base level caused by salt diapirism led
to fluvial incision and reworking of the lacustrine deposits
(Blakey and Gubitosa, 1983, 1984; Hazel, 1994). Oncolites
composing the gravel in the lateral accretion beds are the
only evidence of the lacustrine system.

Climate: Climatic trends are interpreted from vertical
changes of ichnopedofacies, particularly those with pedogenic
carbonate. Modern locations in India and Tanzania were se-
lected as the most appropriate analogues to Chinle Fm palae-
osols due to their monsoonal conditions with similar environ-
ments and latitudinal positions to deposits in the Chinle Fm.

Stage 1 carbonate buildup in PFM ichnopedofacies was
primarily influenced by precipitation levels. Modern soils in
central India (~20-30°N) under monsoonal conditions with
stage 1 carbonate form under precipitation regimes of 1100—
—1300 mm/year (Shrivastava et al., 2002). Modern calcic
soils on the Serengeti of Tanzania (~1-5°S) under monsoon-
al conditions show a similar relationship between carbonate
buildup and precipitation. Carbonate nodules become rarer
as precipitation approaches 1100 mm/year (Jager, 1982).
Modern precipitation values suggest that during PFM dep-
osition, therapsid inceptisols and calcic inceptisols formed
under an annual precipitation of ~1100—1300 mm/year.

Precipitation played a large role in influencing Cambo-
rygma Vertisol ichnopedofacies development. In contem-
porary central India (~20-30°N), vertisols are found under
precipitation regimes of 500-1300 mm/yr (Shrivastava et
al.,2002). These vertisols also display various levels of car-
bonate buildup, with heavy carbonate dissolution occurring
in vertisols where annual precipitation is 1000-1300 mm
(Shrivastava et al., 2002). The lack of carbonate in the
Camborygma Vertisol suggests (1) precipitation levels were
>1300 mm/yr, precluding carbonate formation, and (2)
a shift to more humid conditions across the PFM—-ORM
transition.

Differences in carbonate development between the
two types of lower ORM calcic alfisol ichnopedofaci-
es was not due to differences in duration of pedogenesis,
but variations in precipitation levels. Modern soils with
stage 2 carbonate under monsoonal conditions form on
the Serengeti Plain (~1-5°S) under precipitation regimes
from 700-1100 mm/yr (Jager, 1982). This suggests Nak-
todemasis calcic alfisols formed under an annual precipi-
tation of ~700-1100 mm. Modern soils with stage 3 car-
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bonate similar in size to those in the rhizolith calcic alfisols
are found in southern India (~10-12°N) under precipita-
tion regimes of 400-500 mm/yr (Shankar and Achyuthan,
2007). Carbonate nodules are also present throughout
the whole profile of modern calcic soils forming under
monsoonal conditions in central India (~20-30°N) un-
der precipitation regimes of 500-700 mm/yr (Shrivastava
et al., 2002). This suggests the rhizolith calcic alfisols
formed under an annual precipitation of ~400-700 mm.
Thick Btk horizons in the lower ORM also suggest smaller
scale cycles of decreasing precipitation, allowing the top of
the calcic horizon to move upward over time (Birkeland,
1999). Higher precipitation allows water to flow deeper into
the soil profile, washing out and dissolving the carbonate
nodules (Gile et al., 1966; Shrivastava et al., 2002). Pres-
ervation of thick calcic horizons indicates precipitation de-
creased and rainfall reached shallower and shallower lev-
els, recording small-scale drying cycles during monsoonal
conditions. The change from Camborygma vertisols to Na-
ktodemasis calcic alfisols to rhizolith calcic alfisols marks
a clear shift to drier conditions during lower ORM depo-
sition, from >1300 mm/yr to ~700-1100 mm/yr to finally
~400-700 mm/yr.

In the middle ORM, ichnopedofacies shift to Cam-
borygma inceptisols and calcic inceptisols (Figs 4, 12).
Camborygma likely formed during annual precipitation of
~1100 mm (Jager, 1982); stage 2 carbonate then formed
and moved upward in the profile as precipitation dropped
towards ~700 mm/yr. Despite a decrease in precipitation
during formation of the Camborygma inceptisols and calcic
inceptisols, precipitation levels were still higher than during
formation of the rhizolith calcic alfisols lower in the section.
The reappearance of Camborygma at the top of the middle
ORM suggests areturn to precipitation levels of ~1100 mm/yr
heading into the middle ORM-upper ORM contact.

Ichnopedofacies shift to Naktodemasis alfisols and Nakto-
demasis inceptisols and calcic inceptisols in the upper ORM
(Figs 4, 12). Precipitation levels were likely ~1100 mm/yr at
the base of the upper ORM, then decreased to ~700 mm/yr
up section. Increasing sediment deposition during drier cli-
mate, however, shortened the duration of pedogenesis and
precluded formation of more numerous carbonates in these
ichnopedofacies.

Ichnopedofacies shift from Naktodemasis inceptisols and
calcic inceptisols to rhizolith inceptisols and shallowly bur-
rowed entisols in the CRM, indicating a change from high,
steady sedimentation to higher, nonsteady sedimentation
rates and shorter duration of pedogenesis (Figs 4, 12; Kraus,
1999; Hasiotis and Platt, 2012). Sediment reworking by
meandering and braided rivers, frequent overbank flooding,
and proximity to the fluvial channel prevented the formation
of better developed palaeosols and deeper penetrating or-
ganisms higher in the member. Shallowly burrowed entisols
associated with playa lake deposits are similar to modern
shallow playa lakes in Australia (~35°S) that form under
a precipitation regime of 325 mm/yr (Teller and Last, 1990).
This comparison suggests that shallowly burrowed entisols
in playa lake deposits formed under an annual precipita-
tion of ~325 mm. Rhizoliths in CRM ichnopedofacies give
a lower limit for precipitation levels. In the modern Namib
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desert of Namibia (~23-24°S), the precipitation limit of
vegetated surfaces is ~25 mm/yr (Amit et al., 2010). This
suggests mean annual precipitation towards the end of CRM
deposition was ~325-25 mm. The shift from Naktodemasis
inceptisols and calcic inceptisols to shallowly burrowed en-
tisols and rhizolith inceptisols suggests precipitation levels
decreased from ~400 mm/yr to ~325-25 mm/yr, and that
moisture still entered the environment until the very end of
Chinle Fm deposition (Dubiel, 1987; Dubiel ef al., 1991,
Dubiel and Hasiotis, 2011).

Hydrology: Groundwater and soil moisture conditions,
influenced by climate and proximity to alluvial and lacus-
trine systems (Hasiotis, 2002, 2004, 2008; Hasiotis et al.,
2007a, 2012), varied during Chinle FM deposition, affect-
ing stratigraphic distribution of ichnofossils and depths of
burrowing (Figs 4, 12). The wettest intervals are the PFM,
base of the lower ORM, base and top of the middle ORM,
and base of the upper ORM. These units also have the great-
est occurrences of Camborygma, which penetrate below the
water table into the phreatic zone (Hasiotis and Mitchell,
1993; Hasiotis et al., 1993; Hasiotis, 2002). Higher precip-
itation in the PFM, base of the lower ORM, base and top of
the middle ORM, and base of the upper ORM resulted in
a shallower water table, and more common burrowing by
crayfish. Times of decreased precipitation outside of these
intervals, however, resulted in deepened water tables, and
less common burrowing by crayfish. No Camborygma is
present in the CRM; precipitation was too low and the wa-
ter table was too deep for Camborygma to form. An over-
all decrease in the water table during Chinle Fm deposition
caused Camborygma to occur less often up section and have
greater burrowing depths.

The only instances where hydrophilic and hygrophilic be-
haviour, including Camborygma, occurred during times of
decreased precipitation are in levee deposits in the middle
and upper ORM. Restriction of deep burrowing to proximal
deposits and the predominance of hygrophilic behaviours
indicate fluvial systems fed the groundwater in CRM time.

Ichnofossils displaying terraphilic behaviour become
more dominant up section during Chinle Fm deposition
(Figs 4, 12). In the PFM, lower ORM, and middle ORM,
a variety of ichnofossils displaying all four burrowing be-
haviour categories are observed in floodplain and palustrine
deposits. By upper ORM deposition, Naktodemasis and root
ichnofossils dominate palaeosol profiles. Root ichnofossils
become the only ichnofossils present in floodplain deposits
in the CRM. Decreasing water tables through Chinle Fm
deposition — due to decreasing precipitation levels — ex-
panded the vadose zone and created conditions favourable
to terraphilic burrowers. By CRM deposition, soil moisture
conditions became too dry to support organisms other than
occasional plants.

CLIMATIC VARIATION
IN THE CHINLE BASIN

Numerous investigations support increasing aridity
throughout Chinle Fm deposition, but there is disagree-
ment concerning the details and cause of this climate shift
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(Blakey and Gubitosa, 1983; Dubiel ef al., 1991; Prochnow
et al., 2006a; Cleveland et al., 2008a, b; Dubiel and Hasi-
otis, 2011; Atchley ef al., 2013; Nordt et al., 2015). Previ-
ous studies corroborate a transition from humid to subhu-
mid and semiarid conditions during deposition of the PFM
(Prochnow et al., 2006a; Cleveland ef al., 2008a). Atchley
et al. (2013) and Nordt ef al. (2015) suggested this climate
transition resulted in complete collapse of the Pangean
megamonsoon due to uplift of the Cordilleran magmat-
ic arc. Nordt et al. (2015) also cites magnetostratigraphic
studies that suggest Pangea remained in the tropics through-
out Chinle Fm deposition (Steiner and Lucas, 2000; Loope
etal.,2004; Rowe et al., 2007; Zeigler and Geissman, 2011).
This explanation is in contrast to Dubiel (1987, 1989) and
Dubiel et al. (1991), who interpreted a monsoonal climate
that persisted until the end of the Late Triassic with a de-
crease in precipitation caused by the northward movement
of Pangea.

Monsoonal indicators in ichnopedofacies of the PFM
and ORM in this study indicate that palaeomonsoon circu-
lation did not collapse during deposition of either of these
members. Playa lake, braided river, and meandering river
deposits in the CRM further suggest strongly seasonal mois-
ture until the end of Chinle Fm deposition, supporting the
continuation of monsoonal conditions until the end of the
Triassic. Gradual drying was likely due to the migration of
Pangea into the midlatitudes (Dubiel e al., 1991; Dubiel
and Hasiotis, 2011).

Research in the Chinle Basin of alluvial and lacustrine
deposits did not identify any Milankovitch cyclicity (e.g.,
Prochnow et al., 2006a; Cleveland et al., 2008a; Atchley
et al., 2013; Nordt et al., 2015; this study). Olsen and Kent
(1996, 1999), Olsen et al. (1996), and Olsen (1997) identi-
fied precession cycles nested within eccentricity cycles in
Upper Triassic lacustrine deposits of the Newark Basin. The
lack of well-preserved Milankovitch cyclicity in north-east
Chinle Basin ichnopedofacies of the MM, PFM, ORM, and
CRM can be attributed to: (1) autocyclic channel migration
and overbank flooding episodes that produced variable du-
ration of pedogenesis; and (2) the cut and fill nature of de-
posits obscured the preservation of cycles throughout the
entire formation.

Climate indicators suggest wet-dry patterns in precipi-
tation across the Chinle Basin. In eastern Utah, Prochnow
et al. (2006a) suggested precipitation decreased from
>1400 mm/yr to ~400 mm/yr during PFM deposition, and
increased from ~400 mm/yr to ~600 mm/yr during dep-
osition of the ORM and CRM. Atchley et al. (2013) and
Nordt et al. (2015) interpreted highly fluctuating mois-
ture conditions during deposition of the upper PFM and
ORM at PFNP and the surrounding vicinity, with highs of
~1000 mm/yr during wet periods and lows of ~200 mm/yr
during dry periods. Nordt ef al. (2015) additionally identi-
fied a humid period with mean annual precipitation (MAP)
of ~900 mm near the base of the ORM. In northern New
Mexico, Cleveland et al. (2008a) determined MAP between
~200-450 mm for PFM to RPM deposition, and the RPM
contained wet-dry fluctuations. This research, however, did
not address the mechanism behind these wet-dry cycles, in-
stead it focused on longer term climatic trends and controls
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(Cleveland et al., 2008a; Atchley et al., 2013; Nordt et al.,
2015).

These low MAP values are at odds with the location of
the Chinle Basin in sub-30° palaeolatitudes under a mega-
monsoonal regime in greenhouse conditions (Dickinson,
1981; Parrish and Peterson, 1988; Bazard and Butler, 1991;
Dubiel et al., 1991; Dubiel, 1994; Dubiel and Hasiotis,
2011). They are also lower than precipitation values for
modern, near-equatorial environments affected by mon-
soons, such as the Serengeti plains of Tanzania (e.g., Oliver,
1973; Jager, 1982; Lydolph, 1985; Aber and Melillo, 1991;
Sinclair et al., 2007) and central India (e.g., Shrivastava
et al., 2002; Shankar and Achyuthan, 2007).

Estimated precipitation values determined in our study
of the north-east Chinle Basin by utilizing ichnopedofa-
cies and modern environmental and latitudinal analogues
(Fig. 4) are, in general, higher than MAP values determined
through geochemical methods alone in previous research
elsewhere in the Chinle Basin. For the PFM, Prochnow
et al. (2006a), Atchley ez al. (2013), and Nordt ez al. (2015)
do have precipitation estimates of ~1000 mm/yr, and even
up to ~1400 mm/yr in the case of Prochnow et al. (2006a).
Their MAP estimates are similar to the ~1100-1300 mm/yr
precipitation levels determined in our study. Cleveland et
al. (2008a), however, only estimated ~200-450 mm MAP
for PFM equivalent deposits, well below our estimates for
the north-east Chinle Basin. For ORM deposits in eastern
Utah, the estimated ~400-500 mm MAP by Prochnow
et al. (2006a) is significantly lower than the ~400—-1300 mm/
yr range in precipitation levels suggested by ichnopedofaci-
es. Atchley ef al. (2013) and Nordt ef al. (2015), however,
estimate MAP up to ~1000 mm/yr during wet intervals in
the ORM at PFNP, which is within our range of estimates
for the north-east Chinle Basin. Their MAP estimates for
dry intervals, however, are as low as ~200 mm/yr, which is
half of the estimates based on ichnopedofacies. Cleveland
et al. (2008a) has even lower precipitation estimates for the
Chinle Fm in New Mexico. Palaeosols in the RPM at Ghost
Ranch have estimated MAP of ~200—450 mm based on
depth-to-carbonate functions. These palaecosols also exhib-
it gleyed soil matrix, wedge-shaped peds, abundant semi-
plasmic fabrics, and Camborygma eumekenomos 20—80 cm
deep that are lined with carbonate nodules. These palacosols
have similar appearance to Camborygma calcic inceptisols
in the north-east Chinle Basin, with an estimated MAP of
~700-1100 mm.

These variations in MAP interpretations highlight the im-
portance to integrate ichnological and pedogenic features—to
create ichnopedofacies—into palaeoprecipitation estimates
that are correlated to modern environmental and latitudinal
analogues in order to build more accurate climate models.
The main reason for this variation is the use of different
indicators to estimate annual precipitation. Some of these
studies did attempt to assign modern soil classifications to
palaeosols, but none combined both the ichnological and
pedogenical features, nor compared palacosols to mod-
ern environmental, behavioural, and latitudinal analogues.
Prochnow et al. (2006a), Atchley et al. (2013), and Nordt
et al. (2015) used geochemical weathering indices to calcu-
late MAP, but did not incorporate ichnological evidence into
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their estimates. Cleveland et al. (2008a), while incorporat-
ing some pedogenic and ichnological features, determined
MAP using depth-to-carbonate functions (DTCF), and stat-
ed that, as a consequence, MAP values were likely mini-
mum estimates. Prochnow et al. (2006a) also used DTCF
for some MAP estimates.

Despite the use of different climate indices, overall trends
of palaeoprecipitation variation across the Chinle Basin are
recognized. Although MAP values from New Mexico palae-
osols may be underestimates, the lack of Camborygma from
PFM equivalent units does suggest lower water tables and
decreased precipitation was present south of the north-east
Chinle Basin during this time period. An east-west trend
in precipitation values is also recognized. In the north-east
Chinle Basin, a Camborygma Vertisol is observed within
the lower ORM at south-west section(Figs 4, 12), and rep-
resents the highest precipitation levels in our study area at
>1300 mm/yr. This ichnopedofacies appears to occur in the
same stratigraphic interval as the 900 mm/yr humid pulse
at PFNP, which falls well within the precipitation estimates
from our study. Both the centre and north-east edge of the
Chinle Basin contain evidence for a pulse of wetter con-
ditions, but estimated precipitation was higher during the
wetter interval in the north-east Chinle Basin. Precipitation
levels in the north-east Chinle Basin varied from levels at
the south-east edge and centre of the basin. Climatic condi-
tions were, therefore, not consistent across the Chinle Basin
during the Late Triassic.

CONCLUSIONS

Twelve ichnopedofacies, constructed from seventeen
ichnofossil morphotypes and six palaecosol orders, were
identified in the Chinle Fm of the north-east Chinle Basin:
1) Shallowly burrowed entisols; 2) rhizolith entisols;
3) Camborygma entisols; 4) Naktodemasis-Camborygma
entisols; 5) rhizolith inceptisols; 6) Naktodemasis incepti-
sols and calcic inceptisols; 7) Camborygma inceptisols and
calcic inceptisols; 8) Therapsid inceptisols and calcic incep-
tisols; 9) Camborygma vertisols; 10) Naktodemasis alfisols;
11) Naktodemasis calcic alfisols; and 12) rhizolith calcic
alfisols.

Ichnopedofacies development and their lateral and verti-
cal distribution reveal that the north-east Chinle Basin was
influenced by a variety of physiochemical controls:

1. Higher frequency of channel migration and overbank
flooding in the MM resulted in poorly developed and pre-
served ichnopedofacies. Reduced influence of autocyclic
processes in the PFM and lower ORM resulted in more
developed, calcic ichnopedofacies. Increasing frequency
of autocyclic events during middle ORM deposition re-
sulted in a transition from composite, calcic ichnopedofa-
cies at the base of the unit to less developed, compound,
non-calcic alfisols and inceptisols between channel mi-
gration and overbank flooding deposits. Frequency of
autocyclic events decreased during the upper ORM, re-
sulting in the formation of more developed cumulative
and composite, calcic ichnopedofacies. Increasing fre-
quency of channel migration and overbank flooding in
the CRM resulted in a shift from more developed, calcic

ichnopedofacies to poorly developed, compound incepti-
sols and entisols.

. Basin subsidence controlled the development of fluvial

systems. Sand sheets of braided river deposits suggest de-
creased subsidence, decreased accommodation, frequent
fluvial reworking, and reduced duration of pedogenesis
in the MM. A shift to ribbon sand bodies in the PFM and
ORM suggest meandering rivers with increased subsid-
ence, increased accommodation, less fluvial reworking
and greater duration of pedogenesis. Sheet and ribbon
sand deposits in the CRM suggest a decrease in basin
subsidence, leading to decreased accommodation, more
fluvial reworking, and shorter duration of pedogenesis.
Ribbon sand deposits in the CRM, however, indicate ac-
commodation was still greater than in the MM, allowing
for the preservation of playa lake deposits.

. Changes in base level cut and filled palacovalleys, pre-

serving the palaeotopography present during Chinle Fm
deposition. Topographic position and changes in rate
of valley fill influenced ichnopedological development.
High, nonsteady sedimentation and decreased accommo-
dation in the MM resulted in compound entisols. Low,
nonsteady sedimentation during PFM and lower ORM
deposition resulted in more developed, compound and
composite ichnopedofacies. An increase in nonsteady
sedimentation led to more frequent autocyclic deposits in
the middle ORM and a transition from composite, calcic
ichnopedofacies to compound and composite, non-calcic
ichnopedofacies. Sedimentation rate slightly decreased
and shifted to steady state sedimentation in the upper
ORM, resulting in cumulative and composite ichnopedo-
facies. A shift back to nonsteady sediment deposition in
the CRM and increasing sedimentation rates resulted
in a transition from composite, calcic ichnopedofacies
to compound entisols and inceptisols. Overall, a south to
north trend of decreasing rates of valley fill is observed
in the PFM, lower ORM, and upper ORM.

. Salt tectonism led to the uplift and cannibalization of la-

custrine deposits. Increased accommodation in the low-
er ORM enabled the formation of lakes with oncoids.
Following halokinetic uplift and erosion, oncoids were
redeposited in laterally accreted conglomerate beds, re-
maining the only indicator of previous lacustrine systems
in the study area.

. Climate overall became drier during Chinle Fm deposi-

tion with multiple smaller wet-dry cycles. This pattern is
reflected in the alternations between calcic and non-cal-
cic ichnopedofacies, and polygenetic palaecosol formation
with calcium carbonate nodules overprinting gleyed hori-
zons and ichnofossils.

. Groundwater and soil moisture conditions largely mir-

ror changes in climate. The water table, influenced by
precipitation, decreased up section during Chinle Fm
deposition, and ichnofossils reflecting hydrophilic and
hygrophilic behaviours also decreased up section. Ichn-
ofossils displaying hydrophilic and hygrophilic behav-
iours during periods of decreased precipitation indicate
a shallower water table fed by nearby rivers. No ichn-
ofossils displaying hydrophilic behaviour are present in
the CRM; instead hygrophilic behaviour is observed in
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levee deposits where local water tables were higher. Ich-
nofossils displaying terraphilic behaviour become more
dominant up section, and root ichnofossils become the
only ichnofossils observed in CRM deposits. Naktodema-
sis overprinting the burrow fill of Camborygma in ORM
and CRM fluvial deposits reflect drops in the water table
following flooding events or small-scale drying cycles.

Signatures of seasonality and decreasing precipitation
are seen throughout Chinle Fm deposition in the north-east
Chinle Basin.

1. Therapsid inceptisols and calcic inceptisols in the PFM
suggest an annual precipitation of ~1100—1300 mm with
carbonate buildup during drier periods.

2. Camborygma vertisols in the lower ORM indicate highly
seasonal precipitation >1300 mm/yr with fluctuating wa-
ter tables. Thick Btk horizons with stage 2—-3 carbonate
in overlying Naktodemasis calcic alfisols and rhizolith
calcic alfisols indicate a decrease in precipitation from
~700-1100 mm/yr to ~400-700 mm/yr and short-term
drying cycles.

3. Camborygma inceptisols and calcic inceptisols in the
middle ORM suggest highly fluctuating water tables
and a decrease in annual precipitation from ~1100 mm
to ~700 mm. Reappearance of Camborygma at the top
of the middle ORM indicates precipitation increased to
~1100 mm/yr heading into the upper ORM.

4. Transition to Naktodemasis alfisols and Naktodema-
sis inceptisols and calcic inceptisols in the upper ORM
suggests another drying cycle from ~1100 mm/yr to
~700 mm/yr.

5. Naktodemasis inceptisols and calcic inceptisols near
the base of the CRM suggest precipitation levels of
~400 mm/yr. Rhizolith inceptisols and playa lake depos-
its with shallowly burrowed entisols suggest a precipita-
tion decrease to ~325-25 mm/yr near the end of Chinle
Fm deposition. Despite extended dry periods, the pres-
ence of braided river, meandering river, and playa lake
deposits indicate that moisture was still present until the
end of the Triassic.

Ichnopedofacies suggest monsoonal circulation contin-
ued throughout Chinle Fm deposition and did not fully col-
lapse until the end of the Triassic Period and the migration
of Wingate Sandstone eolian dunes into the area of the Col-
orado Plateau.

The Late Triassic in the Chinle Basin was characterized
by complex climatic patterns which greatly influenced lo-
cal depositional environments, palaeotopography, hydrol-
ogy, pedogenic development, and ichnofossil distribution.
Most variation in estimates of precipitation levels across the
Chinle Basin can be attributed to the use of different climate
indices between studies. The use of ichnopedofacies and
modern soil, environmental, behavioural, and latitudinal an-
alogues in our study resulted in higher MAP values in gener-
al than previous studies of the Chinle Basin, which utilized
geochemical weathering indices and depth-to-carbonate
functions. Variations between MAP values highlights the
need to incorporate ichnopedological features and modern
environmental, behavioural, and latitudinal analogues into
precipitation estimates to develop more accurate climate
models. MAP estimates from previous studies are too low
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for the interpretation of the Chinle Basin being deposited in
sub-30° palaeolatitudes under a megamonsoonal regime in
greenhouse conditions.

This is the first study to establish ichnopedofacies in the
Chinle Fm. Ichnopedofacies have proved to be useful tools
for interpreting fine-scale sedimentological, hydrological,
and climatic conditions of Chinle Fm deposits. Future use
in other Chinle Fm localities will aid in working out de-
tailed interpretations of the timing of climatic changes and
cyclicity in precipitation and will further the understanding
of the spatial and temporal variations in climatic conditions
in the south-west United States during the Late Triassic.
Ichnopedofacies, however, are not confined for use only in
the Chinle Fm. There is great potential in expanding ich-
nopedofacies to other continental strata.
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